Properties

Label 3.17.g_ci_hz
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 + 6 x + 60 x^{2} + 207 x^{3} + 1020 x^{4} + 1734 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.518071423272$, $\pm0.564230590399$, $\pm0.655906432749$
Angle rank:  $3$ (numerical)
Number field:  6.0.1536920811.1
Galois group:  $A_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7941$ $32137227$ $112872492549$ $577454324666211$ $2870916094910350581$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $24$ $374$ $4671$ $82778$ $1424064$ $24140669$ $410294454$ $6975733730$ $118588224312$ $2015995590914$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.1536920811.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ag_ci_ahz$2$(not in LMFDB)