Properties

Label 3.17.c_u_ah
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 20 x^{2} - 7 x^{3} + 340 x^{4} + 578 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.256159040486$, $\pm0.599191401228$, $\pm0.716629197359$
Angle rank:  $3$ (numerical)
Number field:  6.0.19994884459.1
Galois group:  $S_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5847$ $27486747$ $115397099487$ $589069382019651$ $2869047317000171967$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $326$ $4781$ $84442$ $1423140$ $24127757$ $410313686$ $6975613858$ $118587600524$ $2015994068626$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.19994884459.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ac_u_h$2$(not in LMFDB)