Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 2 x + 20 x^{2} - 7 x^{3} + 340 x^{4} + 578 x^{5} + 4913 x^{6}$ |
| Frobenius angles: | $\pm0.256159040486$, $\pm0.599191401228$, $\pm0.716629197359$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.19994884459.1 |
| Galois group: | $S_4\times C_2$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5847$ | $27486747$ | $115397099487$ | $589069382019651$ | $2869047317000171967$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $20$ | $326$ | $4781$ | $84442$ | $1423140$ | $24127757$ | $410313686$ | $6975613858$ | $118587600524$ | $2015994068626$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is 6.0.19994884459.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.17.ac_u_h | $2$ | (not in LMFDB) |