Properties

Label 3.17.ax_it_abvi
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $( 1 - 7 x + 17 x^{2} )( 1 - 8 x + 17 x^{2} )^{2}$
  $1 - 23 x + 227 x^{2} - 1230 x^{3} + 3859 x^{4} - 6647 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.0779791303774$, $\pm0.0779791303774$, $\pm0.177280642489$
Angle rank:  $2$ (numerical)

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1100$ $18590000$ $114014700800$ $580602880000000$ $2863668774319127500$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-5$ $215$ $4720$ $83231$ $1420475$ $24145220$ $410379755$ $6975926591$ $118588488880$ $2015996127575$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ai 2 $\times$ 1.17.ah and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.aj_d_fm$2$(not in LMFDB)
3.17.ah_an_ic$2$(not in LMFDB)
3.17.h_an_aic$2$(not in LMFDB)
3.17.j_d_afm$2$(not in LMFDB)
3.17.x_it_bvi$2$(not in LMFDB)
3.17.b_i_acf$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.aj_d_fm$2$(not in LMFDB)
3.17.ah_an_ic$2$(not in LMFDB)
3.17.h_an_aic$2$(not in LMFDB)
3.17.j_d_afm$2$(not in LMFDB)
3.17.x_it_bvi$2$(not in LMFDB)
3.17.b_i_acf$3$(not in LMFDB)
3.17.ar_fh_abao$4$(not in LMFDB)
3.17.an_cz_ams$4$(not in LMFDB)
3.17.al_df_apm$4$(not in LMFDB)
3.17.ah_bv_aic$4$(not in LMFDB)
3.17.ad_ad_k$4$(not in LMFDB)
3.17.ad_bb_afa$4$(not in LMFDB)
3.17.ab_ah_da$4$(not in LMFDB)
3.17.b_ah_ada$4$(not in LMFDB)
3.17.d_ad_ak$4$(not in LMFDB)
3.17.d_bb_fa$4$(not in LMFDB)
3.17.h_bv_ic$4$(not in LMFDB)
3.17.l_df_pm$4$(not in LMFDB)
3.17.n_cz_ms$4$(not in LMFDB)
3.17.r_fh_bao$4$(not in LMFDB)
3.17.ap_eq_axd$6$(not in LMFDB)
3.17.ab_i_cf$6$(not in LMFDB)
3.17.p_eq_xd$6$(not in LMFDB)
3.17.ah_b_ei$8$(not in LMFDB)
3.17.ah_bh_aei$8$(not in LMFDB)
3.17.h_b_aei$8$(not in LMFDB)
3.17.h_bh_ei$8$(not in LMFDB)
3.17.aj_s_x$12$(not in LMFDB)
3.17.af_ak_gd$12$(not in LMFDB)
3.17.f_ak_agd$12$(not in LMFDB)
3.17.j_s_ax$12$(not in LMFDB)