Properties

Label 3.17.au_hb_ablg
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $( 1 - 8 x + 17 x^{2} )( 1 - 6 x + 17 x^{2} )^{2}$
  $1 - 20 x + 183 x^{2} - 968 x^{3} + 3111 x^{4} - 5780 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.0779791303774$, $\pm0.240632536990$, $\pm0.240632536990$
Angle rank:  $2$ (numerical)

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1440$ $21565440$ $120442476960$ $588401816371200$ $2868518216538295200$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-2$ $256$ $4990$ $84348$ $1422878$ $24140032$ $410300126$ $6975495932$ $118587089470$ $2015994439936$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ai $\times$ 1.17.ag 2 and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ai_p_q$2$(not in LMFDB)
3.17.ae_aj_fw$2$(not in LMFDB)
3.17.e_aj_afw$2$(not in LMFDB)
3.17.i_p_aq$2$(not in LMFDB)
3.17.u_hb_blg$2$(not in LMFDB)
3.17.ac_am_ca$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ai_p_q$2$(not in LMFDB)
3.17.ae_aj_fw$2$(not in LMFDB)
3.17.e_aj_afw$2$(not in LMFDB)
3.17.i_p_aq$2$(not in LMFDB)
3.17.u_hb_blg$2$(not in LMFDB)
3.17.ac_am_ca$3$(not in LMFDB)
3.17.ao_eh_avc$4$(not in LMFDB)
3.17.ak_cl_aki$4$(not in LMFDB)
3.17.ai_t_aq$4$(not in LMFDB)
3.17.ac_p_e$4$(not in LMFDB)
3.17.ac_t_ae$4$(not in LMFDB)
3.17.c_p_ae$4$(not in LMFDB)
3.17.c_t_e$4$(not in LMFDB)
3.17.i_t_q$4$(not in LMFDB)
3.17.k_cl_ki$4$(not in LMFDB)
3.17.o_eh_vc$4$(not in LMFDB)
3.17.ao_dg_ans$6$(not in LMFDB)
3.17.c_am_aca$6$(not in LMFDB)
3.17.o_dg_ns$6$(not in LMFDB)
3.17.aq_ej_aui$8$(not in LMFDB)
3.17.ak_cn_amy$8$(not in LMFDB)
3.17.ag_bh_aia$8$(not in LMFDB)
3.17.a_ap_aq$8$(not in LMFDB)
3.17.a_ap_q$8$(not in LMFDB)
3.17.g_bh_ia$8$(not in LMFDB)
3.17.k_cn_my$8$(not in LMFDB)
3.17.q_ej_ui$8$(not in LMFDB)
3.17.ai_bw_aji$12$(not in LMFDB)
3.17.ae_y_agk$12$(not in LMFDB)
3.17.e_y_gk$12$(not in LMFDB)
3.17.i_bw_ji$12$(not in LMFDB)