Invariants
Base field: | $\F_{17}$ |
Dimension: | $3$ |
L-polynomial: | $( 1 - 8 x + 17 x^{2} )( 1 - 6 x + 17 x^{2} )^{2}$ |
$1 - 20 x + 183 x^{2} - 968 x^{3} + 3111 x^{4} - 5780 x^{5} + 4913 x^{6}$ | |
Frobenius angles: | $\pm0.0779791303774$, $\pm0.240632536990$, $\pm0.240632536990$ |
Angle rank: | $2$ (numerical) |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1440$ | $21565440$ | $120442476960$ | $588401816371200$ | $2868518216538295200$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $-2$ | $256$ | $4990$ | $84348$ | $1422878$ | $24140032$ | $410300126$ | $6975495932$ | $118587089470$ | $2015994439936$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ai $\times$ 1.17.ag 2 and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.