Properties

Label 3.17.au_hb_ablf
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $( 1 - 7 x + 17 x^{2} )( 1 - 13 x + 75 x^{2} - 221 x^{3} + 289 x^{4} )$
  $1 - 20 x + 183 x^{2} - 967 x^{3} + 3111 x^{4} - 5780 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.125047581931$, $\pm0.177280642489$, $\pm0.273653339326$
Angle rank:  $3$ (numerical)

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1441$ $21578975$ $120541102528$ $588979672601375$ $2870711946547676176$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-2$ $256$ $4993$ $84428$ $1423963$ $24149917$ $410366472$ $6975828532$ $118588228711$ $2015995680111$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ah $\times$ 2.17.an_cx and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ag_b_df$2$(not in LMFDB)
3.17.g_b_adf$2$(not in LMFDB)
3.17.u_hb_blf$2$(not in LMFDB)