Properties

Label 3.17.au_gw_abjs
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $( 1 - 8 x + 17 x^{2} )( 1 - 12 x + 65 x^{2} - 204 x^{3} + 289 x^{4} )$
  $1 - 20 x + 178 x^{2} - 928 x^{3} + 3026 x^{4} - 5780 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.0157896134134$, $\pm0.0779791303774$, $\pm0.349122946747$
Angle rank:  $2$ (numerical)

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1390$ $20635940$ $116056526560$ $577733681491200$ $2852802639769683950$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-2$ $246$ $4810$ $82818$ $1415078$ $24117792$ $410299286$ $6975799682$ $118588284490$ $2015993668086$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17^{6}}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ai $\times$ 2.17.am_cn and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{17}$
The base change of $A$ to $\F_{17^{6}}$ is 1.24137569.anxi 2 $\times$ 1.24137569.abmc. The endomorphism algebra for each factor is:
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ae_ao_ei$2$(not in LMFDB)
3.17.e_ao_aei$2$(not in LMFDB)
3.17.u_gw_bjs$2$(not in LMFDB)
3.17.ai_bf_aei$3$(not in LMFDB)
3.17.e_ao_aei$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.ae_ao_ei$2$(not in LMFDB)
3.17.e_ao_aei$2$(not in LMFDB)
3.17.u_gw_bjs$2$(not in LMFDB)
3.17.ai_bf_aei$3$(not in LMFDB)
3.17.e_ao_aei$3$(not in LMFDB)
3.17.ao_ec_aus$4$(not in LMFDB)
3.17.ak_cg_aks$4$(not in LMFDB)
3.17.k_cg_ks$4$(not in LMFDB)
3.17.o_ec_us$4$(not in LMFDB)
3.17.i_bf_ei$6$(not in LMFDB)
3.17.ai_d_ei$12$(not in LMFDB)
3.17.ac_d_bc$12$(not in LMFDB)
3.17.ac_bf_abc$12$(not in LMFDB)
3.17.c_d_abc$12$(not in LMFDB)
3.17.c_bf_bc$12$(not in LMFDB)
3.17.i_d_aei$12$(not in LMFDB)