Properties

Label 3.17.ak_cx_ank
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 10 x + 75 x^{2} - 348 x^{3} + 1275 x^{4} - 2890 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.211370792004$, $\pm0.376910050984$, $\pm0.484703411808$
Angle rank:  $3$ (numerical)
Number field:  6.0.245401408.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3016$ $28688192$ $123689420296$ $582130693820416$ $2861514390185333896$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $340$ $5120$ $83452$ $1419408$ $24146836$ $410371704$ $6975675132$ $118587160088$ $2015991633300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.245401408.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.k_cx_nk$2$(not in LMFDB)