Properties

Label 3.17.aj_cf_ajt
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 9 x + 57 x^{2} - 253 x^{3} + 969 x^{4} - 2601 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.169376685505$, $\pm0.345923157333$, $\pm0.575735532212$
Angle rank:  $3$ (numerical)
Number field:  6.0.392918607.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3077$ $27086831$ $119829829517$ $583868804192119$ $2867972070538621117$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $9$ $323$ $4965$ $83699$ $1422609$ $24139235$ $410322264$ $6976009859$ $118589048961$ $2015990585483$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.392918607.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.j_cf_jt$2$(not in LMFDB)