Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 - 9 x + 57 x^{2} - 253 x^{3} + 969 x^{4} - 2601 x^{5} + 4913 x^{6}$ |
| Frobenius angles: | $\pm0.169376685505$, $\pm0.345923157333$, $\pm0.575735532212$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.392918607.1 |
| Galois group: | $A_4\times C_2$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3077$ | $27086831$ | $119829829517$ | $583868804192119$ | $2867972070538621117$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $9$ | $323$ | $4965$ | $83699$ | $1422609$ | $24139235$ | $410322264$ | $6976009859$ | $118589048961$ | $2015990585483$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=3 x^7+4 x^5+10 x^4+5 x^2+6$
- $y^2=3 x^7+3 x^5+15 x^4+14 x^3+11 x^2+x+7$
- $y^2=3 x^7+9 x^5+7 x^4+16 x^3+13 x+10$
- $y^2=x^7+10 x^5+13 x^4+5 x^3+16 x^2+10 x+12$
- $y^2=x^7+12 x^5+4 x^4+12 x^3+x^2+3 x+12$
- $y^2=x^7+5 x^5+2 x^3+9 x+12$
- $y^2=x^7+8 x^5+2 x^4+4 x^3+10 x^2+3 x+11$
- $y^2=x^7+4 x^5+2 x^4+14 x^3+x^2+7 x+12$
- $y^2=x^7+12 x^5+4 x^4+6 x^3+14 x^2+16 x+7$
- $y^2=3 x^7+13 x^5+11 x^4+10 x^3+15 x^2+3$
- $y^2=x^7+9 x^5+12 x^4+9 x^3+15 x^2+2$
- $y^2=x^7+11 x^5+4 x^4+12 x^3+15 x^2+11 x+3$
- $y^2=3 x^7+5 x^5+5 x^4+4 x^3+11 x^2+10 x+1$
- $y^2=x^7+13 x^5+10 x^4+5 x^3+8 x^2+x+6$
- $y^2=x^7+12 x^5+14 x^4+7 x^3+5 x^2+14 x+1$
- $y^2=x^7+14 x^5+3 x^4+x^3+3 x^2+x+6$
- $y^2=3 x^7+2 x^5+6 x^4+6 x^3+8 x^2+3 x+11$
- $y^2=x^7+9 x^5+14 x^4+x^3+3 x^2+8 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is 6.0.392918607.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.17.j_cf_jt | $2$ | (not in LMFDB) |