Properties

Label 3.17.ac_x_e
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 2 x + 23 x^{2} + 4 x^{3} + 391 x^{4} - 578 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.307063066152$, $\pm0.390059105623$, $\pm0.731874668417$
Angle rank:  $3$ (numerical)
Number field:  6.0.1068085504.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4752$ $28055808$ $122023533456$ $588863129665536$ $2854850053442623632$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $332$ $5056$ $84412$ $1416096$ $24120908$ $410366896$ $6975739900$ $118588546672$ $2015995499212$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 187 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.1068085504.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.c_x_ae$2$(not in LMFDB)