Invariants
Base field: | $\F_{17}$ |
Dimension: | $3$ |
L-polynomial: | $1 - 2 x + 23 x^{2} + 4 x^{3} + 391 x^{4} - 578 x^{5} + 4913 x^{6}$ |
Frobenius angles: | $\pm0.307063066152$, $\pm0.390059105623$, $\pm0.731874668417$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.1068085504.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4752$ | $28055808$ | $122023533456$ | $588863129665536$ | $2854850053442623632$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $332$ | $5056$ | $84412$ | $1416096$ | $24120908$ | $410366896$ | $6975739900$ | $118588546672$ | $2015995499212$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 187 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^7+3 x^6+12 x^5+6 x^4+15 x^3+16 x^2+16 x+16$
- $y^2=3 x^8+2 x^6+3 x^5+3 x^4+7 x^3+15 x^2+10 x+8$
- $y^2=x^8+5 x^7+9 x^6+12 x^5+10 x^4+15 x^3+14 x^2+5 x+10$
- $y^2=3 x^8+12 x^7+6 x^6+6 x^5+3 x^4+16 x^3+4 x^2+4 x+2$
- $y^2=3 x^7+4 x^6+16 x^5+10 x^4+7 x^3+15 x^2+7 x+15$
- $y^2=x^7+6 x^5+4 x^4+10 x^3+12 x^2+3 x+4$
- $y^2=3 x^7+7 x^6+13 x^5+13 x^4+8 x^3+9 x^2+12 x+3$
- $y^2=3 x^7+2 x^6+10 x^5+10 x^4+10 x^3+15 x^2+8 x+10$
- $y^2=x^7+16 x^6+5 x^5+9 x^4+3 x^3+4 x^2+6 x+14$
- $y^2=x^8+5 x^7+2 x^6+6 x^5+2 x^4+12 x^3+11 x^2+8 x+4$
- $y^2=3 x^7+9 x^6+8 x^5+7 x^4+4 x^3+12 x^2+13 x+5$
- $y^2=x^8+16 x^7+8 x^6+2 x^5+3 x^4+15 x^3+16 x^2+3 x+6$
- $y^2=x^8+11 x^7+12 x^6+2 x^5+5 x^4+16 x^3+13 x^2+13 x+16$
- $y^2=3 x^8+7 x^7+9 x^6+11 x^5+5 x^4+12 x^3+x^2+12$
- $y^2=3 x^8+10 x^7+15 x^6+5 x^5+15 x^4+x^3+16 x^2+8 x+5$
- $y^2=3 x^8+6 x^7+5 x^6+10 x^5+11 x^4+5 x^3+16 x^2+15 x$
- $y^2=3 x^8+6 x^7+13 x^6+2 x^4+10 x^3+14 x^2+10 x+6$
- $y^2=3 x^8+11 x^7+6 x^6+12 x^5+13 x^4+x^3+11 x^2+13 x+14$
- $y^2=3 x^8+6 x^7+7 x^6+11 x^5+12 x^4+13 x^3+16 x^2+7 x+1$
- $y^2=x^8+10 x^7+8 x^6+8 x^5+16 x^4+7 x^3+5 x^2+15 x+12$
- and 167 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 6.0.1068085504.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.17.c_x_ae | $2$ | (not in LMFDB) |