Properties

Label 3.17.ac_bk_add
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 2 x + 36 x^{2} - 81 x^{3} + 612 x^{4} - 578 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.278012796892$, $\pm0.544031782056$, $\pm0.584315101253$
Angle rank:  $3$ (numerical)
Number field:  6.0.405315211.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4901$ $30498923$ $117750097829$ $581001341760931$ $2871788672031319781$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $358$ $4879$ $83290$ $1424496$ $24139069$ $410226462$ $6975642402$ $118589006872$ $2015994116658$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.405315211.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.c_bk_dd$2$(not in LMFDB)