Properties

Label 3.17.a_bj_aq
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 + 35 x^{2} - 16 x^{3} + 595 x^{4} + 4913 x^{6}$
Frobenius angles:  $\pm0.319538104927$, $\pm0.541745749992$, $\pm0.633173862496$
Angle rank:  $3$ (numerical)
Number field:  6.0.1005481216.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5528$ $30735680$ $117409683992$ $582138696908800$ $2868074554266952088$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $360$ $4866$ $83452$ $1422658$ $24127080$ $410268114$ $6975867132$ $118588748082$ $2015995517800$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 89 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.1005481216.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.a_bj_q$2$(not in LMFDB)