Invariants
| Base field: | $\F_{13}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 9 x + 61 x^{2} + 247 x^{3} + 793 x^{4} + 1521 x^{5} + 2197 x^{6}$ |
| Frobenius angles: | $\pm0.538567305886$, $\pm0.626855622023$, $\pm0.764770733179$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.11945115039.1 |
| Galois group: | $S_4\times C_2$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1/2, 1/2, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4829$ | $6156975$ | $9785046161$ | $23331148710375$ | $51291910870585209$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $23$ | $211$ | $2021$ | $28603$ | $372063$ | $4828087$ | $62738216$ | $815702227$ | $10604785523$ | $137857926911$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=2 x^7+9 x^4+4 x^3+6 x^2+7 x+1$
- $y^2=2 x^7+2 x^5+3 x^4+9 x^3+11 x^2+4 x+12$
- $y^2=x^7+8 x^5+x^4+5 x^3+3 x^2+9 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$| The endomorphism algebra of this simple isogeny class is 6.0.11945115039.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.13.aj_cj_ajn | $2$ | (not in LMFDB) |