Properties

Label 3.13.j_cj_jn
Base field $\F_{13}$
Dimension $3$
$p$-rank $2$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
L-polynomial:  $1 + 9 x + 61 x^{2} + 247 x^{3} + 793 x^{4} + 1521 x^{5} + 2197 x^{6}$
Frobenius angles:  $\pm0.538567305886$, $\pm0.626855622023$, $\pm0.764770733179$
Angle rank:  $3$ (numerical)
Number field:  6.0.11945115039.1
Galois group:  $S_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4829$ $6156975$ $9785046161$ $23331148710375$ $51291910870585209$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $211$ $2021$ $28603$ $372063$ $4828087$ $62738216$ $815702227$ $10604785523$ $137857926911$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 6.0.11945115039.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.13.aj_cj_ajn$2$(not in LMFDB)