Invariants
Base field: | $\F_{13}$ |
Dimension: | $3$ |
L-polynomial: | $( 1 + 2 x + 13 x^{2} )( 1 - 2 x^{2} + 169 x^{4} )$ |
$1 + 2 x + 11 x^{2} - 4 x^{3} + 143 x^{4} + 338 x^{5} + 2197 x^{6}$ | |
Frobenius angles: | $\pm0.237745206151$, $\pm0.589456187511$, $\pm0.762254793849$ |
Angle rank: | $2$ (numerical) |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2688$ | $5419008$ | $10273592448$ | $23726758035456$ | $51351632897728128$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $188$ | $2128$ | $29084$ | $372496$ | $4828316$ | $62733904$ | $815657660$ | $10604617744$ | $137857231868$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 285 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=2 x^7+8 x^6+2 x^5+12 x^4+8 x^3+8 x^2+12 x$
- $y^2=2 x^7+8 x^6+8 x^5+6 x^4+9 x^3+9 x^2+10 x$
- $y^2=x^7+x^6+10 x^5+6 x^4+5 x^3+11 x^2+5 x$
- $y^2=2 x^7+8 x^6+x^3+2 x$
- $y^2=2 x^7+10 x^6+3 x^5+8 x^4+11 x^3+2 x^2+3 x$
- $y^2=x^7+x^6+7 x^5+5 x^4+x^3+7 x^2+4 x$
- $y^2=x^7+6 x^6+3 x^5+x^4+x^3+3 x^2+6 x+1$
- $y^2=x^7+2 x^6+7 x^5+4 x^3+4 x^2+6$
- $y^2=2 x^7+2 x^6+4 x^5+2 x^4+10 x^3+8 x^2+8 x$
- $y^2=2 x^7+6 x^6+6 x^5+6 x^4+12 x^3+11 x^2+3 x$
- $y^2=2 x^7+12 x^6+4 x^5+11 x^4+10 x^3+8 x^2+8 x+9$
- $y^2=2 x^7+4 x^6+8 x^5+x^4+x^3+11 x+1$
- $y^2=x^7+2 x^6+9 x^5+7 x^4+9 x^3+11 x^2+11 x+4$
- $y^2=2 x^8+10 x^7+8 x^6+7 x^5+10 x^4+10 x^3+9 x^2+12 x+10$
- $y^2=x^8+2 x^7+x^6+6 x^5+9 x^4+4 x^3+6 x^2+7 x+6$
- $y^2=x^8+3 x^7+10 x^6+2 x^5+3 x^4+4 x^3+x^2+11 x+3$
- $y^2=2 x^8+4 x^7+7 x^6+6 x^5+2 x^4+5 x^3+3 x+3$
- $y^2=2 x^8+10 x^7+9 x^6+4 x^5+10 x^4+8 x^3+10 x^2+2 x+6$
- $y^2=2 x^8+10 x^7+7 x^6+x^5+10 x^4+5 x^3+x^2+x+9$
- $y^2=x^8+3 x^7+x^6+8 x^5+x^4+9 x^3+x^2+9 x+12$
- and 265 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13^{2}}$.
Endomorphism algebra over $\F_{13}$The isogeny class factors as 1.13.c $\times$ 2.13.a_ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{13^{2}}$ is 1.169.ac 2 $\times$ 1.169.w. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.