Properties

Label 3.13.c_l_ae
Base field $\F_{13}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
L-polynomial:  $( 1 + 2 x + 13 x^{2} )( 1 - 2 x^{2} + 169 x^{4} )$
  $1 + 2 x + 11 x^{2} - 4 x^{3} + 143 x^{4} + 338 x^{5} + 2197 x^{6}$
Frobenius angles:  $\pm0.237745206151$, $\pm0.589456187511$, $\pm0.762254793849$
Angle rank:  $2$ (numerical)

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2688$ $5419008$ $10273592448$ $23726758035456$ $51351632897728128$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $188$ $2128$ $29084$ $372496$ $4828316$ $62733904$ $815657660$ $10604617744$ $137857231868$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 285 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{2}}$.

Endomorphism algebra over $\F_{13}$
The isogeny class factors as 1.13.c $\times$ 2.13.a_ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{2}}$ is 1.169.ac 2 $\times$ 1.169.w. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.13.ac_l_e$2$(not in LMFDB)
3.13.ah_l_o$3$(not in LMFDB)
3.13.f_l_ak$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.13.ac_l_e$2$(not in LMFDB)
3.13.ah_l_o$3$(not in LMFDB)
3.13.f_l_ak$3$(not in LMFDB)
3.13.ac_p_ae$4$(not in LMFDB)
3.13.c_p_e$4$(not in LMFDB)
3.13.af_l_k$6$(not in LMFDB)
3.13.h_l_ao$6$(not in LMFDB)
3.13.ah_p_ao$12$(not in LMFDB)
3.13.af_p_ak$12$(not in LMFDB)
3.13.f_p_k$12$(not in LMFDB)
3.13.h_p_o$12$(not in LMFDB)