Properties

Label 3.13.ad_be_ach
Base field $\F_{13}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
L-polynomial:  $1 - 3 x + 30 x^{2} - 59 x^{3} + 390 x^{4} - 507 x^{5} + 2197 x^{6}$
Frobenius angles:  $\pm0.309415928931$, $\pm0.424491728861$, $\pm0.624961826247$
Angle rank:  $3$ (numerical)
Number field:  6.0.507683619.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2049$ $6530163$ $10920612672$ $23340742020411$ $51160606468156149$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $221$ $2264$ $28613$ $371111$ $4820396$ $62744483$ $815801765$ $10604407352$ $137858143061$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 6.0.507683619.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.13.d_be_ch$2$(not in LMFDB)