Properties

Label 3.13.a_x_as
Base field $\F_{13}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
L-polynomial:  $1 + 23 x^{2} - 18 x^{3} + 299 x^{4} + 2197 x^{6}$
Frobenius angles:  $\pm0.286919669726$, $\pm0.555271725591$, $\pm0.647776216412$
Angle rank:  $3$ (numerical)
Number field:  6.0.5364381632.2
Galois group:  $S_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2502$ $6350076$ $10341999486$ $23410977591024$ $51472151345634822$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $216$ $2144$ $28700$ $373364$ $4822092$ $62719538$ $815734172$ $10604580698$ $137858998356$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 29 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 6.0.5364381632.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.13.a_x_s$2$(not in LMFDB)