Properties

Label 3.11.e_z_cu
Base field $\F_{11}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
L-polynomial:  $1 + 4 x + 25 x^{2} + 72 x^{3} + 275 x^{4} + 484 x^{5} + 1331 x^{6}$
Frobenius angles:  $\pm0.385231524488$, $\pm0.566600645841$, $\pm0.769037620337$
Angle rank:  $3$ (numerical)
Number field:  6.0.10754864.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2192$ $2349824$ $2323026800$ $3147485855744$ $4156602408423632$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $156$ $1312$ $14684$ $160256$ $1771836$ $19486672$ $214364220$ $2358144304$ $25936794716$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 45 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 6.0.10754864.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.11.ae_z_acu$2$(not in LMFDB)