Properties

Label 3.11.c_n_ci
Base field $\F_{11}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 13 x^{2} + 60 x^{3} + 143 x^{4} + 242 x^{5} + 1331 x^{6}$
Frobenius angles:  $\pm0.353531971590$, $\pm0.455457331086$, $\pm0.845887015313$
Angle rank:  $3$ (numerical)
Number field:  6.0.190465712.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1792$ $2121728$ $2562450688$ $3127121543168$ $4132922819452672$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $144$ $1442$ $14588$ $159334$ $1773456$ $19485242$ $214393020$ $2357903198$ $25937402384$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 80 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 6.0.190465712.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.11.ac_n_aci$2$(not in LMFDB)