Invariants
Base field: | $\F_{11}$ |
Dimension: | $3$ |
L-polynomial: | $1 + 2 x + 13 x^{2} + 60 x^{3} + 143 x^{4} + 242 x^{5} + 1331 x^{6}$ |
Frobenius angles: | $\pm0.353531971590$, $\pm0.455457331086$, $\pm0.845887015313$ |
Angle rank: | $3$ (numerical) |
Number field: | 6.0.190465712.1 |
Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $3$ |
Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1792$ | $2121728$ | $2562450688$ | $3127121543168$ | $4132922819452672$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $14$ | $144$ | $1442$ | $14588$ | $159334$ | $1773456$ | $19485242$ | $214393020$ | $2357903198$ | $25937402384$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^8+7 x^7+6 x^5+8 x^4+10 x^2+x+7$
- $y^2=10 x^7+7 x^6+7 x^5+6 x^4+x^3+8 x^2+10 x+7$
- $y^2=5 x^7+5 x^6+6 x^4+7 x^3+5 x^2+x+10$
- $y^2=4 x^8+9 x^7+x^6+3 x^5+5 x^4+10 x^3+3 x^2+x+5$
- $y^2=5 x^8+8 x^7+x^6+7 x^5+3 x^4+3 x^3+5 x^2+3 x+7$
- $y^2=9 x^8+2 x^7+x^5+x^4+4 x^3+x^2+5 x+4$
- $y^2=8 x^8+9 x^7+8 x^6+5 x^5+4 x^4+7 x^3+x^2+4 x+5$
- $y^2=x^8+x^6+3 x^5+9 x^4+2 x^3+8 x^2+5$
- $y^2=5 x^8+x^7+3 x^6+3 x^5+2 x^4+5 x^3+7 x^2+6 x+3$
- $y^2=9 x^8+3 x^7+7 x^6+2 x^5+10 x^4+8 x^3+x^2+2 x$
- $y^2=x^7+3 x^6+8 x^5+6 x^4+5 x^3+6 x^2+2 x+6$
- $y^2=9 x^8+9 x^7+3 x^6+3 x^5+2 x^3+9 x^2+3 x+2$
- $y^2=10 x^8+2 x^7+3 x^6+6 x^5+3 x^4+9 x^3+6 x^2+6 x+3$
- $y^2=7 x^8+9 x^7+9 x^6+4 x^5+3 x^4+5 x^3+x^2+2 x+4$
- $y^2=5 x^8+8 x^7+3 x^6+7 x^5+2 x^4+10 x^3+2 x^2+8 x+1$
- $y^2=2 x^8+x^7+9 x^6+10 x^5+3 x^4+8 x^3+3 x^2+9 x+2$
- $y^2=2 x^8+2 x^7+10 x^6+x^5+3 x^4+7 x^3+5 x^2+9 x+3$
- $y^2=4 x^8+8 x^7+9 x^6+5 x^5+10 x^4+3 x^3+x^2+6 x+3$
- $y^2=7 x^8+x^7+4 x^6+6 x^5+5 x^4+10 x^3+2 x^2+5 x+7$
- $y^2=4 x^8+9 x^7+5 x^6+8 x^5+5 x^4+8 x^3+8 x^2+x+9$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$The endomorphism algebra of this simple isogeny class is 6.0.190465712.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
3.11.ac_n_aci | $2$ | (not in LMFDB) |