Properties

Label 3.11.ai_ca_ahh
Base field $\F_{11}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
L-polynomial:  $1 - 8 x + 52 x^{2} - 189 x^{3} + 572 x^{4} - 968 x^{5} + 1331 x^{6}$
Frobenius angles:  $\pm0.278828159910$, $\pm0.374141280167$, $\pm0.442191303687$
Angle rank:  $3$ (numerical)
Number field:  6.0.99427811.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $791$ $2468711$ $2675605751$ $3148764350459$ $4148604397215761$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $162$ $1501$ $14690$ $159944$ $1769505$ $19490104$ $214362786$ $2357892988$ $25937378282$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 6.0.99427811.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.11.i_ca_hh$2$(not in LMFDB)