Properties

Label 3.11.a_bd_c
Base field $\F_{11}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
L-polynomial:  $1 + 29 x^{2} + 2 x^{3} + 319 x^{4} + 1331 x^{6}$
Frobenius angles:  $\pm0.418735557018$, $\pm0.474097353952$, $\pm0.608338196709$
Angle rank:  $3$ (numerical)
Number field:  6.0.1541953984.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1682$ $2822396$ $2369391350$ $3052714803184$ $4169704376890202$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $12$ $180$ $1338$ $14236$ $160762$ $1772808$ $19494480$ $214375644$ $2357817792$ $25937066800$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 6.0.1541953984.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.11.a_bd_ac$2$(not in LMFDB)