Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 19 x + 97 x^{2} )^{2}$ |
| $1 - 38 x + 555 x^{2} - 3686 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.0849741350078$, $\pm0.0849741350078$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6241$ | $85433049$ | $830547886336$ | $7835827755484521$ | $73741668375066892561$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $9076$ | $910014$ | $88511140$ | $8587253580$ | $832972117822$ | $80798295030828$ | $7837433783928004$ | $760231061232421758$ | $73742412720085649236$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=5 x^6+5 x^3+59$
- $y^2=15 x^6+94 x^5+20 x^4+69 x^3+90 x^2+12 x+21$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.at 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.