Properties

Label 2.97.abi_sm
Base field $\F_{97}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{97}$
Dimension:  $2$
L-polynomial:  $1 - 34 x + 480 x^{2} - 3298 x^{3} + 9409 x^{4}$
Frobenius angles:  $\pm0.100083112680$, $\pm0.217693055951$
Angle rank:  $2$ (numerical)
Number field:  4.0.827712.1
Galois group:  $D_{4}$
Jacobians:  $12$
Isomorphism classes:  12

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6558$ $86709876$ $832755622302$ $7838451049734096$ $73743945254977114158$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $64$ $9214$ $912436$ $88540774$ $8587518724$ $832973615854$ $80798293725808$ $7837433616007678$ $760231058584757200$ $73742412692078320654$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{97}$.

Endomorphism algebra over $\F_{97}$
The endomorphism algebra of this simple isogeny class is 4.0.827712.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.97.bi_sm$2$(not in LMFDB)