Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 97 x^{2} )( 1 + 4 x + 97 x^{2} )$ |
$1 + 178 x^{2} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.434908349536$, $\pm0.565091650464$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $112$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9588$ | $91929744$ | $832972620276$ | $7835155901485056$ | $73742412681651655668$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9766$ | $912674$ | $88503550$ | $8587340258$ | $832973235622$ | $80798284478114$ | $7837433617426174$ | $760231058654565218$ | $73742412673810485286$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=90 x^6+14 x^5+30 x^4+88 x^3+92 x+59$
- $y^2=62 x^6+70 x^5+53 x^4+52 x^3+72 x+4$
- $y^2=56 x^6+65 x^5+25 x^4+56 x^3+28 x^2+23 x+77$
- $y^2=86 x^6+34 x^5+28 x^4+86 x^3+43 x^2+18 x+94$
- $y^2=60 x^6+83 x^5+60 x^4+70 x^3+14 x^2+44 x+1$
- $y^2=9 x^6+27 x^5+9 x^4+59 x^3+70 x^2+26 x+5$
- $y^2=19 x^6+92 x^5+35 x^4+44 x^3+80 x^2+27 x+83$
- $y^2=91 x^5+69 x^4+73 x^3+13 x^2+43 x$
- $y^2=67 x^5+54 x^4+74 x^3+65 x^2+21 x$
- $y^2=75 x^6+13 x^5+79 x^4+86 x^3+45 x^2+29 x+79$
- $y^2=71 x^6+33 x^5+28 x^4+17 x^3+53 x^2+32 x+35$
- $y^2=88 x^6+42 x^5+19 x^4+71 x^3+78 x^2+6 x+64$
- $y^2=52 x^6+16 x^5+95 x^4+64 x^3+2 x^2+30 x+29$
- $y^2=x^6+28 x^5+93 x^4+30 x^3+22 x^2+68 x+13$
- $y^2=5 x^6+43 x^5+77 x^4+53 x^3+13 x^2+49 x+65$
- $y^2=52 x^6+86 x^5+42 x^4+3 x^3+42 x^2+86 x+52$
- $y^2=66 x^6+42 x^5+16 x^4+15 x^3+16 x^2+42 x+66$
- $y^2=31 x^6+87 x^5+87 x^4+92 x^3+31 x^2+87 x+59$
- $y^2=58 x^6+47 x^5+47 x^4+72 x^3+58 x^2+47 x+4$
- $y^2=72 x^6+44 x^5+66 x^4+59 x^3+71 x^2+47 x+17$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.ae $\times$ 1.97.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.gw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-93}) \)$)$ |
Base change
This is a primitive isogeny class.