Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 167 x^{2} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.415025864992$, $\pm0.584974135008$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\zeta_{12})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $228$ |
| Isomorphism classes: | 122 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9577$ | $91718929$ | $832971948484$ | $7835827755484521$ | $73742412674196414457$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $98$ | $9744$ | $912674$ | $88511140$ | $8587340258$ | $832971892038$ | $80798284478114$ | $7837433783928004$ | $760231058654565218$ | $73742412658900002864$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):
- $y^2=52 x^6+73 x^5+57 x^4+8 x^3+58 x^2+28 x+46$
- $y^2=66 x^6+74 x^5+91 x^4+40 x^3+96 x^2+43 x+36$
- $y^2=28 x^6+71 x^5+74 x^4+73 x^3+84 x^2+69 x+66$
- $y^2=43 x^6+64 x^5+79 x^4+74 x^3+32 x^2+54 x+39$
- $y^2=28 x^6+10 x^5+94 x^4+43 x^3+23 x^2+83 x+82$
- $y^2=43 x^6+50 x^5+82 x^4+21 x^3+18 x^2+27 x+22$
- $y^2=x^6+90 x^5+95 x^4+59 x^3+6 x^2+52 x+61$
- $y^2=37 x^6+62 x^5+96 x^4+16 x^3+13 x^2+48 x+12$
- $y^2=88 x^6+19 x^5+92 x^4+80 x^3+65 x^2+46 x+60$
- $y^2=15 x^6+17 x^5+38 x^4+51 x^3+33 x^2+8 x+46$
- $y^2=75 x^6+85 x^5+93 x^4+61 x^3+68 x^2+40 x+36$
- $y^2=50 x^6+59 x^5+78 x^3+8 x^2+14 x+87$
- $y^2=56 x^6+4 x^5+2 x^3+40 x^2+70 x+47$
- $y^2=87 x^6+68 x^5+36 x^4+76 x^3+86 x^2+95 x+9$
- $y^2=47 x^6+49 x^5+83 x^4+89 x^3+42 x^2+87 x+45$
- $y^2=64 x^6+29 x^5+51 x^4+59 x^3+49 x^2+3 x+85$
- $y^2=29 x^6+48 x^5+61 x^4+4 x^3+51 x^2+15 x+37$
- $y^2=90 x^6+78 x^5+25 x^4+11 x^3+33 x^2+46 x+63$
- $y^2=62 x^6+2 x^5+28 x^4+55 x^3+68 x^2+36 x+24$
- $y^2=88 x^6+59 x^5+57 x^4+58 x^3+4 x^2+23 x+77$
- and 208 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
| The base change of $A$ to $\F_{97^{2}}$ is 1.9409.gl 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.