Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 193 x^{2} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.0161666856435$, $\pm0.983833314357$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{43})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9217$ | $84953089$ | $832970263684$ | $7834170744744201$ | $73742412674486072257$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9024$ | $912674$ | $88492420$ | $8587340258$ | $832968522438$ | $80798284478114$ | $7837433269090564$ | $760231058654565218$ | $73742412659479318464$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{43})\). |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.ahl 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
Base change
This is a primitive isogeny class.