Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 65 x^{2} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.195623131991$, $\pm0.804376868009$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-129}, \sqrt{259})\) |
Galois group: | $C_2^2$ |
Jacobians: | $264$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9345$ | $87329025$ | $832973565060$ | $7840017800015625$ | $73742412672480252225$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9280$ | $912674$ | $88558468$ | $8587340258$ | $832975125190$ | $80798284478114$ | $7837433522582788$ | $760231058654565218$ | $73742412655467678400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=57 x^6+71 x^5+57 x^4+63 x^3+13 x^2+22 x+13$
- $y^2=91 x^6+64 x^5+91 x^4+24 x^3+65 x^2+13 x+65$
- $y^2=64 x^6+63 x^5+66 x^4+15 x^3+82 x^2+75 x+39$
- $y^2=29 x^6+24 x^5+39 x^4+75 x^3+22 x^2+84 x+1$
- $y^2=18 x^6+87 x^5+16 x^4+79 x^3+23 x^2+61 x+22$
- $y^2=90 x^6+47 x^5+80 x^4+7 x^3+18 x^2+14 x+13$
- $y^2=39 x^6+45 x^5+66 x^4+93 x^3+18 x^2+33 x+93$
- $y^2=x^6+31 x^5+39 x^4+77 x^3+90 x^2+68 x+77$
- $y^2=29 x^6+21 x^5+70 x^4+12 x^3+82 x^2+46 x+24$
- $y^2=91 x^6+19 x^5+5 x^4+10 x^3+11 x^2+91 x+34$
- $y^2=67 x^6+95 x^5+25 x^4+50 x^3+55 x^2+67 x+73$
- $y^2=84 x^6+57 x^5+16 x^4+58 x^3+23 x^2+47 x+4$
- $y^2=32 x^6+91 x^5+80 x^4+96 x^3+18 x^2+41 x+20$
- $y^2=68 x^6+93 x^5+93 x^4+62 x^3+77 x^2+94 x+61$
- $y^2=67 x^6+76 x^5+53 x^4+5 x^3+34 x^2+4 x+87$
- $y^2=44 x^6+89 x^5+71 x^4+25 x^3+73 x^2+20 x+47$
- $y^2=31 x^6+18 x^5+68 x^4+31 x^3+37 x^2+77 x+75$
- $y^2=58 x^6+90 x^5+49 x^4+58 x^3+88 x^2+94 x+84$
- $y^2=76 x^6+14 x^5+46 x^4+94 x^3+86 x^2+18 x+19$
- $y^2=89 x^6+70 x^5+36 x^4+82 x^3+42 x^2+90 x+95$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-129}, \sqrt{259})\). |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.acn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33411}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.a_cn | $4$ | (not in LMFDB) |