Properties

Label 2.97.a_acn
Base field $\F_{97}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{97}$
Dimension:  $2$
L-polynomial:  $1 - 65 x^{2} + 9409 x^{4}$
Frobenius angles:  $\pm0.195623131991$, $\pm0.804376868009$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-129}, \sqrt{259})\)
Galois group:  $C_2^2$
Jacobians:  $264$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9345$ $87329025$ $832973565060$ $7840017800015625$ $73742412672480252225$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $98$ $9280$ $912674$ $88558468$ $8587340258$ $832975125190$ $80798284478114$ $7837433522582788$ $760231058654565218$ $73742412655467678400$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{97^{2}}$.

Endomorphism algebra over $\F_{97}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-129}, \sqrt{259})\).
Endomorphism algebra over $\overline{\F}_{97}$
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.acn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33411}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.97.a_cn$4$(not in LMFDB)