Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 46 x^{2} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.211899351649$, $\pm0.788100648351$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{15}, \sqrt{-37})\) |
Galois group: | $C_2^2$ |
Jacobians: | $140$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9364$ | $87684496$ | $832973206036$ | $7840391282528256$ | $73742412673504300564$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9318$ | $912674$ | $88562686$ | $8587340258$ | $832974407142$ | $80798284478114$ | $7837433390580478$ | $760231058654565218$ | $73742412657515775078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=37 x^6+39 x^5+63 x^4+86 x^3+66 x^2+56 x+1$
- $y^2=88 x^6+x^5+24 x^4+42 x^3+39 x^2+86 x+5$
- $y^2=52 x^6+4 x^5+30 x^4+51 x^3+66 x^2+31 x+33$
- $y^2=51 x^6+57 x^5+82 x^4+54 x^3+37 x^2+91 x+96$
- $y^2=61 x^6+91 x^5+22 x^4+76 x^3+88 x^2+67 x+92$
- $y^2=30 x^6+86 x^5+58 x^4+62 x^3+62 x^2+6 x+64$
- $y^2=32 x^6+5 x^5+80 x^4+66 x^3+27 x^2+69 x+21$
- $y^2=81 x^6+5 x^5+46 x^4+72 x^3+30 x^2+79 x+37$
- $y^2=8 x^6+42 x^5+58 x^4+87 x^3+24 x^2+5 x+52$
- $y^2=34 x^6+55 x^5+16 x^4+51 x^3+80 x^2+17 x+79$
- $y^2=46 x^6+7 x^5+3 x^4+95 x^3+75 x^2+30 x+41$
- $y^2=36 x^6+35 x^5+15 x^4+87 x^3+84 x^2+53 x+11$
- $y^2=56 x^6+42 x^5+93 x^4+36 x^3+53 x^2+86 x+60$
- $y^2=92 x^6+51 x^5+71 x^4+50 x^3+66 x^2+56 x+53$
- $y^2=15 x^6+95 x^5+36 x^4+69 x^3+7 x^2+52 x+31$
- $y^2=75 x^6+87 x^5+83 x^4+54 x^3+35 x^2+66 x+58$
- $y^2=6 x^6+44 x^5+60 x^4+65 x^3+26 x^2+79 x+63$
- $y^2=59 x^6+55 x^5+36 x^4+9 x^3+6 x^2+55 x+52$
- $y^2=34 x^6+86 x^5+14 x^4+76 x^3+57 x^2+59 x+52$
- $y^2=73 x^6+42 x^5+70 x^4+89 x^3+91 x^2+4 x+66$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{15}, \sqrt{-37})\). |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.abu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-555}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.a_bu | $4$ | (not in LMFDB) |