Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 18 x + 253 x^{2} + 1602 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.612859471990$, $\pm0.707555818666$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.40560192.1 |
Galois group: | $D_{4}$ |
Jacobians: | $76$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9795$ | $64206225$ | $494853155820$ | $3937293744690825$ | $31182438707507570475$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $108$ | $8104$ | $701946$ | $62753476$ | $5584188168$ | $496979534662$ | $44231339899512$ | $3936588864783556$ | $350356403172028554$ | $31181719930552063624$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 76 curves (of which all are hyperelliptic):
- $y^2=18 x^6+19 x^5+86 x^4+86 x^3+51 x^2+3 x+44$
- $y^2=73 x^6+20 x^5+79 x^4+39 x^3+35 x^2+27 x+85$
- $y^2=47 x^6+43 x^5+82 x^4+2 x^3+55 x^2+51 x+53$
- $y^2=68 x^6+60 x^5+83 x^4+48 x^3+7 x^2+x+36$
- $y^2=84 x^6+75 x^5+17 x^4+25 x^3+33 x^2+72 x+11$
- $y^2=31 x^6+73 x^5+69 x^4+69 x^3+85 x^2+85 x+84$
- $y^2=x^6+84 x^5+77 x^4+44 x^3+54 x^2+63 x+26$
- $y^2=24 x^6+80 x^5+26 x^4+28 x^3+67 x^2+2 x+66$
- $y^2=62 x^6+20 x^5+84 x^4+6 x^3+65 x^2+19 x+44$
- $y^2=69 x^6+23 x^5+62 x^4+48 x^3+30 x^2+2 x+78$
- $y^2=52 x^6+39 x^5+52 x^4+43 x^3+24 x^2+8 x+5$
- $y^2=18 x^6+59 x^5+81 x^4+14 x^3+12 x^2+67 x+39$
- $y^2=70 x^6+19 x^5+57 x^4+6 x^3+55 x^2+23 x+4$
- $y^2=10 x^6+45 x^5+35 x^4+22 x^3+63 x^2+72 x+5$
- $y^2=52 x^6+78 x^5+13 x^4+76 x^3+2 x^2+74 x+41$
- $y^2=72 x^6+71 x^5+22 x^4+37 x^3+87 x^2+53 x+46$
- $y^2=40 x^6+34 x^5+31 x^4+44 x^3+21 x^2+7 x+33$
- $y^2=83 x^6+70 x^5+75 x^4+78 x^3+58 x^2+50 x+72$
- $y^2=62 x^6+51 x^5+72 x^4+88 x^3+86 x^2+67 x+88$
- $y^2=58 x^6+40 x^5+11 x^4+14 x^3+69 x^2+58 x+15$
- and 56 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.40560192.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.as_jt | $2$ | (not in LMFDB) |