Properties

Label 2.89.i_es
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 122 x^{2} + 712 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.423600118308$, $\pm0.730172634780$
Angle rank:  $2$ (numerical)
Number field:  4.0.268864.1
Galois group:  $D_{4}$
Jacobians:  $594$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8764$ $64187536$ $496783773052$ $3936982060082176$ $31180561191291585724$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $98$ $8102$ $704690$ $62748510$ $5583851938$ $496980959942$ $44231360615218$ $3936588738428734$ $350356402987258850$ $31181719928244934502$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 594 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.268864.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.ai_es$2$(not in LMFDB)