Properties

Label 2.89.e_eo
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 89 x^{2} )( 1 + 10 x + 89 x^{2} )$
  $1 + 4 x + 118 x^{2} + 356 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.396989011311$, $\pm0.677807684489$
Angle rank:  $2$ (numerical)
Jacobians:  $902$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8400$ $64512000$ $496780174800$ $3936929955840000$ $31181171377849122000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $8142$ $704686$ $62747678$ $5583961214$ $496979400942$ $44231354361806$ $3936588942772798$ $350356402313156254$ $31181719927410009102$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 902 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.ag $\times$ 1.89.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.aq_je$2$(not in LMFDB)
2.89.ae_eo$2$(not in LMFDB)
2.89.q_je$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.aq_je$2$(not in LMFDB)
2.89.ae_eo$2$(not in LMFDB)
2.89.q_je$2$(not in LMFDB)
2.89.aw_ko$4$(not in LMFDB)
2.89.ak_de$4$(not in LMFDB)
2.89.k_de$4$(not in LMFDB)
2.89.w_ko$4$(not in LMFDB)