Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - 10 x^{2} + 356 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.283714927667$, $\pm0.817672775226$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.50688.2 |
Galois group: | $D_{4}$ |
Jacobians: | $366$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8272$ | $62470144$ | $497864953168$ | $3938150861996032$ | $31181128494458350672$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $7886$ | $706222$ | $62767134$ | $5583953534$ | $496981802990$ | $44231313009614$ | $3936588738902590$ | $350356404412502686$ | $31181719930213731086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 366 curves (of which all are hyperelliptic):
- $y^2=37 x^6+78 x^5+72 x^4+56 x^3+72 x^2+69 x+43$
- $y^2=67 x^6+40 x^4+71 x^3+68 x^2+18 x+25$
- $y^2=39 x^6+16 x^5+16 x^4+68 x^3+33 x^2+4 x+39$
- $y^2=12 x^6+18 x^5+68 x^4+34 x^3+30 x^2+75 x+61$
- $y^2=49 x^6+25 x^5+65 x^4+46 x^3+39 x^2+20 x+27$
- $y^2=70 x^6+51 x^5+54 x^4+36 x^3+86 x^2+39 x+66$
- $y^2=68 x^6+32 x^5+37 x^4+11 x^3+49 x^2+52 x+65$
- $y^2=16 x^6+66 x^5+61 x^4+25 x^3+58 x^2+70 x+2$
- $y^2=71 x^6+23 x^5+36 x^4+45 x^3+55 x^2+77 x+7$
- $y^2=38 x^6+22 x^5+63 x^4+54 x^3+60 x^2+64 x+31$
- $y^2=4 x^6+50 x^5+73 x^4+44 x^3+44 x^2+32 x+32$
- $y^2=31 x^6+66 x^5+88 x^4+72 x^3+51 x^2+3$
- $y^2=32 x^6+41 x^5+52 x^4+54 x^3+62 x^2+30 x+21$
- $y^2=65 x^6+83 x^5+22 x^4+32 x^3+44 x^2+24 x+44$
- $y^2=20 x^6+73 x^5+33 x^4+72 x^3+32 x^2+65 x+35$
- $y^2=26 x^6+66 x^5+60 x^4+50 x^3+87 x^2+78 x+56$
- $y^2=64 x^6+58 x^5+74 x^4+84 x^3+53 x^2+83 x+28$
- $y^2=65 x^6+54 x^5+12 x^4+83 x^3+83 x^2+21 x+85$
- $y^2=59 x^6+6 x^5+27 x^4+86 x^3+84 x^2+88 x+47$
- $y^2=58 x^6+75 x^5+79 x^4+80 x^3+86 x^2+59 x+32$
- and 346 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.50688.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.ae_ak | $2$ | (not in LMFDB) |