Properties

Label 2.89.ba_nj
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 + 13 x + 89 x^{2} )^{2}$
  $1 + 26 x + 347 x^{2} + 2314 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.741949407251$, $\pm0.741949407251$
Angle rank:  $1$ (numerical)
Jacobians:  $17$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10609$ $62900761$ $495188060416$ $3938566940548009$ $31180697988451651249$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $116$ $7940$ $702422$ $62773764$ $5583876436$ $496980864686$ $44231356725364$ $3936588559852804$ $350356404960670598$ $31181719935555359300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.aba_nj$2$(not in LMFDB)
2.89.a_j$2$(not in LMFDB)
2.89.an_dc$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.aba_nj$2$(not in LMFDB)
2.89.a_j$2$(not in LMFDB)
2.89.an_dc$3$(not in LMFDB)
2.89.a_aj$4$(not in LMFDB)
2.89.n_dc$6$(not in LMFDB)