Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 13 x + 89 x^{2} )^{2}$ |
$1 + 26 x + 347 x^{2} + 2314 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.741949407251$, $\pm0.741949407251$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $17$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10609$ | $62900761$ | $495188060416$ | $3938566940548009$ | $31180697988451651249$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $116$ | $7940$ | $702422$ | $62773764$ | $5583876436$ | $496980864686$ | $44231356725364$ | $3936588559852804$ | $350356404960670598$ | $31181719935555359300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 17 curves (of which all are hyperelliptic):
- $y^2=59 x^6+57 x^5+3 x^4+46 x^3+38 x^2+8 x+6$
- $y^2=24 x^6+25 x^5+6 x^4+6 x^3+80 x^2+19 x+47$
- $y^2=72 x^6+74 x^5+47 x^4+24 x^3+69 x^2+72 x+61$
- $y^2=46 x^6+55 x^5+36 x^4+35 x^3+51 x^2+41 x+50$
- $y^2=20 x^6+72 x^5+56 x^4+8 x^3+49 x^2+69 x+68$
- $y^2=30 x^6+57 x^5+50 x^4+50 x^3+4 x^2+76 x+9$
- $y^2=28 x^6+2 x^5+72 x^4+70 x^3+5 x^2+67 x+33$
- $y^2=79 x^6+30 x^5+2 x^4+23 x^3+65 x^2+47 x+68$
- $y^2=81 x^6+88 x^5+50 x^4+37 x^3+63 x^2+87 x+43$
- $y^2=88 x^6+78 x^5+21 x^4+32 x^3+25 x^2+50 x+79$
- $y^2=16 x^6+23 x^5+53 x^4+47 x^3+20 x^2+6 x+8$
- $y^2=39 x^6+84 x^5+56 x^4+87 x^3+41 x^2+49 x+25$
- $y^2=7 x^6+79 x^5+28 x^4+52 x^3+86 x^2+21 x+37$
- $y^2=80 x^6+48 x^5+51 x^4+56 x^3+61 x^2+45 x+30$
- $y^2=80 x^6+30 x^5+19 x^4+61 x^3+16 x^2+69 x+30$
- $y^2=57 x^6+49 x^5+74 x^4+4 x^3+49 x^2+84 x+32$
- $y^2=71 x^6+29 x^5+74 x^3+85 x^2+3 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.