Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 18 x + 235 x^{2} - 1602 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.236409153682$, $\pm0.430257512985$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $291$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6537$ | $63912249$ | $498430352016$ | $3936932223957225$ | $31181679618693113577$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $8068$ | $707022$ | $62747716$ | $5584052232$ | $496982005486$ | $44231341968648$ | $3936588710182276$ | $350356401527787198$ | $31181719918850164228$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 291 curves (of which all are hyperelliptic):
- $y^2=56 x^6+6 x^5+19 x^4+11 x^3+33 x^2+62 x+56$
- $y^2=11 x^6+6 x^5+61 x^4+23 x^3+81 x^2+21 x+83$
- $y^2=5 x^6+16 x^5+70 x^4+12 x^3+50 x^2+67 x+42$
- $y^2=56 x^6+65 x^5+37 x^4+25 x^3+22 x^2+12 x+52$
- $y^2=70 x^6+66 x^5+83 x^4+69 x^3+72 x^2+40 x+33$
- $y^2=71 x^6+15 x^5+18 x^4+62 x^3+x^2+79 x+41$
- $y^2=82 x^6+3 x^5+18 x^4+23 x^3+40 x^2+34 x+34$
- $y^2=40 x^6+15 x^5+81 x^4+50 x^3+84 x^2+39 x+60$
- $y^2=11 x^6+80 x^5+58 x^4+63 x^3+39 x^2+77 x+25$
- $y^2=60 x^6+73 x^5+74 x^4+31 x^3+79 x^2+16 x+27$
- $y^2=41 x^6+11 x^5+30 x^4+73 x^3+21 x^2+76 x+62$
- $y^2=64 x^6+15 x^5+18 x^4+61 x^3+18 x^2+7$
- $y^2=62 x^6+52 x^5+42 x^4+31 x^3+24 x^2+66 x+28$
- $y^2=67 x^6+66 x^5+68 x^4+73 x^3+84 x^2+45 x+5$
- $y^2=65 x^6+74 x^5+22 x^4+17 x^3+9 x^2+30 x+14$
- $y^2=51 x^6+75 x^5+x^4+18 x^3+45 x^2+39 x+19$
- $y^2=28 x^6+29 x^5+86 x^4+59 x^2+21 x+38$
- $y^2=73 x^6+50 x^5+62 x^4+62 x^2+88 x+69$
- $y^2=81 x^6+18 x^4+27 x^3+12 x^2+50 x+66$
- $y^2=83 x^6+17 x^5+31 x^4+83 x^3+6 x^2+53 x+7$
- and 271 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\). |
The base change of $A$ to $\F_{89^{3}}$ is 1.704969.bnm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.