Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 137 x^{2} - 1068 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.213651833311$, $\pm0.546985166645$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{77})\) |
Galois group: | $C_2^2$ |
Jacobians: | $300$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6979$ | $63781081$ | $496982183152$ | $3936655125371241$ | $31183096917870446899$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $8052$ | $704970$ | $62743300$ | $5584306038$ | $496983075342$ | $44231323655478$ | $3936588681336964$ | $350356403707485210$ | $31181719920865755252$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=64 x^6+30 x^5+35 x^4+85 x^3+75 x^2+61 x+61$
- $y^2=74 x^6+37 x^5+61 x^4+23 x^3+61 x^2+67 x+47$
- $y^2=72 x^6+4 x^5+60 x^3+12 x^2+74 x+11$
- $y^2=9 x^6+76 x^5+32 x^4+48 x^3+72 x^2+34 x+24$
- $y^2=48 x^6+74 x^5+54 x^4+66 x^3+24 x+8$
- $y^2=23 x^6+6 x^5+27 x^4+7 x^3+9 x^2+65 x+5$
- $y^2=56 x^6+5 x^5+22 x^4+45 x^3+36 x^2+64 x+56$
- $y^2=59 x^6+65 x^5+36 x^4+57 x^3+x^2+4 x+35$
- $y^2=3 x^6+86 x^5+67 x^4+32 x^3+50 x^2+50 x+60$
- $y^2=69 x^6+13 x^5+84 x^4+63 x^3+29 x^2+26 x+8$
- $y^2=24 x^6+88 x^5+72 x^4+73 x^3+85 x^2+33 x+52$
- $y^2=52 x^6+84 x^5+33 x^4+73 x^3+60 x^2+69 x+55$
- $y^2=61 x^6+85 x^5+43 x^4+51 x^3+39 x^2+24 x+3$
- $y^2=51 x^6+8 x^5+87 x^4+21 x^3+11 x^2+31 x+51$
- $y^2=78 x^6+42 x^5+10 x^4+58 x^3+41 x^2+17 x+63$
- $y^2=36 x^6+13 x^5+20 x^4+17 x^3+26 x^2+28 x+41$
- $y^2=12 x^6+53 x^5+79 x^4+84 x^3+41 x^2+21 x+53$
- $y^2=9 x^6+56 x^5+5 x^4+17 x^3+9 x^2+49 x+62$
- $y^2=28 x^6+83 x^5+32 x^4+85 x^3+13 x^2+25 x+53$
- $y^2=66 x^6+77 x^5+75 x^4+7 x^3+3 x^2+25 x+86$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{6}}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{77})\). |
The base change of $A$ to $\F_{89^{6}}$ is 1.496981290961.bytva 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-231}) \)$)$ |
- Endomorphism algebra over $\F_{89^{2}}$
The base change of $A$ to $\F_{89^{2}}$ is the simple isogeny class 2.7921.fa_nhj and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{77})\). - Endomorphism algebra over $\F_{89^{3}}$
The base change of $A$ to $\F_{89^{3}}$ is the simple isogeny class 2.704969.a_bytva and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{77})\).
Base change
This is a primitive isogeny class.