Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 56 x^{2} - 801 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.163716752814$, $\pm0.628778390433$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1618805.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $264$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7168$ | $62992384$ | $495840722944$ | $3937100850708480$ | $31183173326788123648$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $81$ | $7953$ | $703350$ | $62750401$ | $5584319721$ | $496981633326$ | $44231342769009$ | $3936589001240641$ | $350356403239044390$ | $31181719918394848353$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=7 x^6+36 x^5+20 x^4+81 x^3+54 x^2+34 x+14$
- $y^2=66 x^6+75 x^5+x^4+75 x^3+81 x^2+14 x+64$
- $y^2=62 x^6+86 x^5+2 x^4+85 x^3+11 x^2+48 x+44$
- $y^2=8 x^6+19 x^5+11 x^4+69 x^3+43 x^2+26 x+61$
- $y^2=76 x^6+48 x^5+68 x^4+81 x^3+72 x^2+46 x+37$
- $y^2=15 x^6+40 x^5+18 x^4+9 x^3+53 x^2+17 x+40$
- $y^2=56 x^6+77 x^5+31 x^4+69 x^3+7 x^2+72 x+74$
- $y^2=70 x^6+85 x^5+88 x^4+37 x^3+67 x^2+5 x+64$
- $y^2=84 x^6+34 x^5+38 x^4+20 x^3+76 x^2+27 x$
- $y^2=76 x^6+53 x^5+53 x^4+66 x^3+88 x^2+43 x+53$
- $y^2=51 x^6+3 x^5+43 x^4+74 x^3+29 x^2+71 x+37$
- $y^2=72 x^6+x^5+55 x^4+39 x^3+39 x^2+84 x+54$
- $y^2=81 x^6+67 x^5+75 x^4+27 x^3+x^2+62 x+16$
- $y^2=64 x^6+56 x^5+60 x^4+42 x^3+42 x^2+x+48$
- $y^2=2 x^6+22 x^5+78 x^4+29 x^3+56 x^2+80 x+23$
- $y^2=49 x^6+10 x^4+81 x^3+44 x^2+47 x+66$
- $y^2=20 x^6+29 x^5+60 x^4+49 x^3+31 x^2+16 x+15$
- $y^2=29 x^6+48 x^5+80 x^4+24 x^3+2 x^2+14 x+57$
- $y^2=36 x^6+81 x^5+49 x^4+7 x^3+19 x^2+73 x+20$
- $y^2=8 x^6+78 x^5+40 x^4+4 x^3+34 x^2+14 x+24$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.1618805.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.j_ce | $2$ | (not in LMFDB) |