Properties

Label 2.89.ae_di
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 86 x^{2} - 356 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.284980455240$, $\pm0.635620769790$
Angle rank:  $2$ (numerical)
Number field:  4.0.92160.3
Galois group:  $D_{4}$
Jacobians:  $468$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7648$ $63998464$ $496909779424$ $3937620694835200$ $31182622307229972448$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $86$ $8078$ $704870$ $62758686$ $5584221046$ $496979251886$ $44231319488134$ $3936588846708286$ $350356403190633110$ $31181719935038729678$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 468 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.92160.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.e_di$2$(not in LMFDB)