Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 18 x + 89 x^{2} )^{2}$ |
$1 - 36 x + 502 x^{2} - 3204 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.0969241796512$, $\pm0.0969241796512$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $6$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5184$ | $60466176$ | $495537155136$ | $3935902059085824$ | $31181639329704181824$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $7630$ | $702918$ | $62731294$ | $5584045014$ | $496982005486$ | $44231349041766$ | $3936588996741694$ | $350356405887183222$ | $31181719952198222350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=26 x^6+72 x^4+72 x^2+26$
- $y^2=38 x^6+25 x^5+37 x^4+67 x^3+52 x^2+25 x+51$
- $y^2=74 x^6+10 x^4+10 x^2+74$
- $y^2=53 x^6+55 x^5+74 x^4+80 x^3+14 x^2+40 x+39$
- $y^2=19 x^6+16 x^5+16 x^4+25 x^3+16 x^2+16 x+19$
- $y^2=x^5+88 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.