Properties

Label 2.89.abk_ti
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 - 18 x + 89 x^{2} )^{2}$
  $1 - 36 x + 502 x^{2} - 3204 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.0969241796512$, $\pm0.0969241796512$
Angle rank:  $1$ (numerical)
Jacobians:  $6$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5184$ $60466176$ $495537155136$ $3935902059085824$ $31181639329704181824$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $54$ $7630$ $702918$ $62731294$ $5584045014$ $496982005486$ $44231349041766$ $3936588996741694$ $350356405887183222$ $31181719952198222350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_afq$2$(not in LMFDB)
2.89.bk_ti$2$(not in LMFDB)
2.89.s_jb$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_afq$2$(not in LMFDB)
2.89.bk_ti$2$(not in LMFDB)
2.89.s_jb$3$(not in LMFDB)
2.89.a_fq$4$(not in LMFDB)
2.89.as_jb$6$(not in LMFDB)
2.89.ai_bg$8$(not in LMFDB)
2.89.i_bg$8$(not in LMFDB)