Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 143 x^{2} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.398481125447$, $\pm0.601518874553$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{35}, \sqrt{-321})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $228$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8065$ | $65044225$ | $496980817060$ | $3936010845393225$ | $31181719918810776625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $8208$ | $704970$ | $62733028$ | $5584059450$ | $496980343158$ | $44231334895530$ | $3936589014222148$ | $350356403707485210$ | $31181719907655369648$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 228 curves (of which all are hyperelliptic):
- $y^2=11 x^6+60 x^5+60 x^4+22 x^3+18 x^2+41 x+65$
- $y^2=13 x^6+31 x^5+48 x^4+46 x^3+48 x^2+6 x+72$
- $y^2=39 x^6+4 x^5+55 x^4+49 x^3+55 x^2+18 x+38$
- $y^2=5 x^6+44 x^5+34 x^4+35 x^3+55 x^2+55 x+31$
- $y^2=15 x^6+43 x^5+13 x^4+16 x^3+76 x^2+76 x+4$
- $y^2=29 x^6+85 x^5+15 x^4+73 x^3+66 x^2+34 x+55$
- $y^2=87 x^6+77 x^5+45 x^4+41 x^3+20 x^2+13 x+76$
- $y^2=60 x^6+37 x^5+2 x^4+84 x^3+10 x^2+2 x+5$
- $y^2=2 x^6+22 x^5+6 x^4+74 x^3+30 x^2+6 x+15$
- $y^2=38 x^6+50 x^5+14 x^4+81 x^3+78 x^2+19 x+32$
- $y^2=25 x^6+61 x^5+42 x^4+65 x^3+56 x^2+57 x+7$
- $y^2=57 x^6+52 x^5+25 x^4+35 x^3+12 x^2+84 x+54$
- $y^2=82 x^6+67 x^5+75 x^4+16 x^3+36 x^2+74 x+73$
- $y^2=53 x^6+51 x^5+21 x^4+80 x^3+80 x^2+45 x+71$
- $y^2=70 x^6+64 x^5+63 x^4+62 x^3+62 x^2+46 x+35$
- $y^2=88 x^6+83 x^5+65 x^4+54 x^3+47 x^2+88 x+23$
- $y^2=86 x^6+71 x^5+17 x^4+73 x^3+52 x^2+86 x+69$
- $y^2=84 x^6+77 x^5+22 x^4+35 x^3+28 x^2+39 x+35$
- $y^2=74 x^6+53 x^5+66 x^4+16 x^3+84 x^2+28 x+16$
- $y^2=73 x^6+25 x^5+83 x^4+85 x^3+34 x^2+71 x+70$
- and 208 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{35}, \sqrt{-321})\). |
| The base change of $A$ to $\F_{89^{2}}$ is 1.7921.fn 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11235}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.a_afn | $4$ | (not in LMFDB) |