Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 20 x + 258 x^{2} + 1660 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.628767441205$, $\pm0.748627552040$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.751616.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $112$ |
| Isomorphism classes: | 144 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8828$ | $48271504$ | $325513581596$ | $2252977064708096$ | $15516143994240111868$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $104$ | $7006$ | $569288$ | $47472750$ | $3939066744$ | $326939479822$ | $27136055398808$ | $2252292231770334$ | $186940255440832904$ | $15516041182671543486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=3 x^6+9 x^5+21 x^4+64 x^3+59 x^2+35 x+49$
- $y^2=69 x^6+3 x^5+53 x^4+8 x^3+48 x^2+31 x+80$
- $y^2=49 x^6+80 x^5+61 x^4+46 x^3+39 x^2+2 x+49$
- $y^2=41 x^6+64 x^5+30 x^4+47 x^3+17 x^2+66 x+74$
- $y^2=51 x^6+21 x^5+75 x^4+20 x^3+61 x^2+35 x+53$
- $y^2=6 x^6+45 x^5+51 x^4+33 x^3+37 x^2+9 x+63$
- $y^2=64 x^6+53 x^5+20 x^4+11 x^3+74$
- $y^2=28 x^6+61 x^5+61 x^4+47 x^3+61 x^2+43 x+23$
- $y^2=34 x^6+3 x^5+3 x^4+61 x^3+32 x^2+9 x+29$
- $y^2=11 x^5+46 x^4+16 x^3+42 x^2+17 x+7$
- $y^2=31 x^6+64 x^5+78 x^4+42 x^3+43 x^2+41 x+21$
- $y^2=49 x^6+9 x^5+77 x^4+66 x^3+14 x^2+47 x+70$
- $y^2=15 x^6+15 x^5+26 x^4+36 x^3+48 x^2+14 x+75$
- $y^2=44 x^6+41 x^5+43 x^4+46 x^3+62 x^2+50 x+21$
- $y^2=68 x^6+22 x^5+33 x^4+9 x^2+64 x+60$
- $y^2=41 x^6+5 x^5+66 x^4+28 x^2+7 x+55$
- $y^2=20 x^6+12 x^5+17 x^4+69 x^3+7 x^2+36 x+33$
- $y^2=50 x^6+68 x^5+79 x^4+54 x^3+3 x^2+76 x+60$
- $y^2=15 x^6+5 x^5+57 x^4+37 x^2+23 x+38$
- $y^2=79 x^6+15 x^5+40 x^4+56 x^3+73 x^2+76 x+17$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is 4.0.751616.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.au_jy | $2$ | (not in LMFDB) |