Properties

Label 2.83.u_jy
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 + 20 x + 258 x^{2} + 1660 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.628767441205$, $\pm0.748627552040$
Angle rank:  $2$ (numerical)
Number field:  4.0.751616.1
Galois group:  $D_{4}$
Jacobians:  $112$
Isomorphism classes:  144
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8828$ $48271504$ $325513581596$ $2252977064708096$ $15516143994240111868$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $104$ $7006$ $569288$ $47472750$ $3939066744$ $326939479822$ $27136055398808$ $2252292231770334$ $186940255440832904$ $15516041182671543486$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.751616.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.au_jy$2$(not in LMFDB)