Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 8 x^{2} + 332 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.299611899088$, $\pm0.799611899088$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{8})\) |
Galois group: | $C_2^2$ |
Jacobians: | $185$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7234$ | $47469508$ | $327492041650$ | $2253354189762064$ | $15515549776033300354$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $6890$ | $572752$ | $47480694$ | $3938915888$ | $326940373370$ | $27136037919176$ | $2252292171719134$ | $186940256473227736$ | $15516041187205853450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 185 curves (of which all are hyperelliptic):
- $y^2=60 x^6+39 x^5+60 x^4+13 x^3+71 x^2+65 x+50$
- $y^2=46 x^6+65 x^5+2 x^4+26 x^3+50 x^2+69 x+3$
- $y^2=45 x^6+78 x^5+66 x^4+82 x^3+70 x^2+6 x+44$
- $y^2=48 x^6+68 x^5+61 x^4+6 x^3+33 x^2+55 x+80$
- $y^2=66 x^6+33 x^5+52 x^4+62 x^3+55 x^2+69 x+29$
- $y^2=66 x^6+8 x^5+28 x^4+28 x^3+3 x^2+69 x+37$
- $y^2=43 x^6+14 x^5+25 x^4+29 x^3+16 x^2+52 x+43$
- $y^2=19 x^6+41 x^5+37 x^4+42 x^3+40 x^2+57 x+31$
- $y^2=x^6+28 x^5+39 x^4+51 x^3+5 x^2+71 x+32$
- $y^2=58 x^6+26 x^5+41 x^4+33 x^3+75 x^2+x+48$
- $y^2=24 x^6+15 x^5+33 x^4+x^3+51 x^2+78 x+15$
- $y^2=76 x^6+12 x^5+65 x^4+67 x^3+20 x^2+22 x+33$
- $y^2=5 x^6+82 x^5+70 x^4+39 x^3+56 x^2+65 x+17$
- $y^2=37 x^6+7 x^5+25 x^4+40 x^3+8 x^2+65 x+71$
- $y^2=16 x^6+64 x^5+49 x^4+78 x^3+80 x^2+53 x+19$
- $y^2=58 x^6+44 x^5+46 x^4+71 x^3+53 x^2+8 x+42$
- $y^2=53 x^6+62 x^5+50 x^4+59 x^3+19 x^2+32$
- $y^2=4 x^6+81 x^5+81 x^4+25 x^3+32 x^2+75 x+34$
- $y^2=74 x^6+3 x^5+34 x^4+39 x^3+46 x^2+64 x+35$
- $y^2=39 x^6+25 x^5+78 x^4+52 x^3+33 x^2+80 x+58$
- and 165 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{4}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{8})\). |
The base change of $A$ to $\F_{83^{4}}$ is 1.47458321.qog 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
- Endomorphism algebra over $\F_{83^{2}}$
The base change of $A$ to $\F_{83^{2}}$ is the simple isogeny class 2.6889.a_qog and its endomorphism algebra is \(\Q(\zeta_{8})\).
Base change
This is a primitive isogeny class.