Properties

Label 2.83.ag_fa
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 130 x^{2} - 498 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.321137203569$, $\pm0.565236285901$
Angle rank:  $2$ (numerical)
Number field:  4.0.1891600.3
Galois group:  $D_{4}$
Jacobians:  $480$
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6516$ $49026384$ $327300432804$ $2252255608094976$ $15516302561797898916$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $78$ $7114$ $572418$ $47457550$ $3939106998$ $326939642458$ $27136033253610$ $2252292259104094$ $186940256913906174$ $15516041189781307114$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 480 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.1891600.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.g_fa$2$(not in LMFDB)