Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 25 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.225939336994$, $\pm0.774060663006$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-141}, \sqrt{191})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $112$ |
| Isomorphism classes: | 128 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6865$ | $47128225$ | $326940874420$ | $2253540938675625$ | $15516041181802000825$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6840$ | $571788$ | $47484628$ | $3939040644$ | $326941375470$ | $27136050989628$ | $2252292075969508$ | $186940255267540404$ | $15516041176398148200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=11 x^6+45 x^5+23 x^4+82 x^3+23 x^2+82 x+29$
- $y^2=22 x^6+7 x^5+46 x^4+81 x^3+46 x^2+81 x+58$
- $y^2=12 x^6+28 x^5+74 x^4+74 x^3+62 x^2+56 x+13$
- $y^2=24 x^6+56 x^5+65 x^4+65 x^3+41 x^2+29 x+26$
- $y^2=59 x^6+58 x^5+38 x^4+x^3+82 x^2+63 x+74$
- $y^2=62 x^6+71 x^5+3 x^4+69 x^3+24 x^2+30 x+31$
- $y^2=6 x^6+81 x^5+10 x^4+34 x^3+32 x^2+32 x+76$
- $y^2=42 x^6+30 x^5+4 x^4+59 x^3+72 x^2+34 x+76$
- $y^2=x^6+60 x^5+8 x^4+35 x^3+61 x^2+68 x+69$
- $y^2=10 x^6+33 x^5+63 x^4+54 x^3+61 x^2+67 x+7$
- $y^2=20 x^6+66 x^5+43 x^4+25 x^3+39 x^2+51 x+14$
- $y^2=20 x^6+32 x^5+39 x^4+46 x^3+61 x^2+74 x+78$
- $y^2=40 x^6+64 x^5+78 x^4+9 x^3+39 x^2+65 x+73$
- $y^2=44 x^6+3 x^5+32 x^4+11 x^3+40 x^2+32 x+18$
- $y^2=5 x^6+6 x^5+64 x^4+22 x^3+80 x^2+64 x+36$
- $y^2=68 x^6+14 x^5+7 x^4+44 x^3+x^2+2 x+21$
- $y^2=53 x^6+28 x^5+14 x^4+5 x^3+2 x^2+4 x+42$
- $y^2=6 x^6+67 x^5+72 x^4+25 x^3+19 x^2+8 x+17$
- $y^2=65 x^6+63 x^5+73 x^4+4 x^3+81 x^2+16 x+3$
- $y^2=32 x^6+7 x^5+6 x^4+13 x^3+52 x^2+57 x+39$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-141}, \sqrt{191})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.az 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-26931}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.a_z | $4$ | (not in LMFDB) |