Invariants
Base field: | $\F_{3^{4}}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 30 x + 380 x^{2} - 2430 x^{3} + 6561 x^{4}$ |
Frobenius angles: | $\pm0.0632554344274$, $\pm0.259213082638$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1696576.1 |
Galois group: | $D_{4}$ |
Jacobians: | $24$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4482$ | $42139764$ | $282381422562$ | $1853185626758736$ | $12157686905205490002$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $6422$ | $531352$ | $43050566$ | $3486790552$ | $282428960102$ | $22876782757972$ | $1853020106690558$ | $150094635076063252$ | $12157665463868084102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=(a+1) x^6+(a^3+a) x^5+(2 a^3+a) x^4+(2 a^3+a^2) x^3+(a^3+a^2+1) x^2+(2 a^2+2 a) x+a^3+a^2+2 a+2$
- $y^2=a x^6+(a^3+a^2+1) x^5+(2 a+2) x^4+(2 a^3+a+1) x^3+(2 a^3+a^2+2 a+2) x^2+(2 a^3+a^2+1) x+2 a^3+a^2+2 a$
- $y^2=(a^2+2 a+1) x^6+(a^3+a+2) x^5+(a^2+2 a) x^4+(2 a^3+2 a^2+a) x^3+(2 a^2+1) x^2+(a^3+2 a^2+2 a+2) x+a^3+a^2+2 a+2$
- $y^2=(2 a^3+a+1) x^6+a^2 x^5+2 x^4+(a^3+2 a^2) x^3+(a^3+a^2+a) x^2+(a^3+a^2+a+1) x+2 a^3+2 a^2+2 a$
- $y^2=(2 a^2+1) x^6+(2 a^3+2 a^2+2 a+1) x^5+(a^3+2 a+2) x^4+(2 a+2) x^3+(a^3+a+1) x^2+(a^2+2 a+1) x+2 a^3+1$
- $y^2=(a^3+a^2+1) x^6+(2 a^2+2) x^5+(2 a^3+a^2) x^4+(a^3+a^2+2) x^3+(2 a^2+a+1) x^2+(2 a^3+2 a^2+a) x+a^3+a^2+2 a+2$
- $y^2=(a^3+a^2+2 a+2) x^6+(a^3+a^2+1) x^5+(a^2+a) x^4+(2 a^3+2 a) x^3+(a^3+a^2+2 a) x^2+(a^3+a^2+a) x+2 a^2+1$
- $y^2=a x^6+a^3 x^5+(a^3+a^2) x^4+(2 a^3+2 a^2+a) x^3+(a^3+1) x^2+a^3 x+a^2+1$
- $y^2=(2 a^3+2 a^2+1) x^6+(a^3+2 a^2+2 a+2) x^5+(2 a^3+a^2+1) x^4+(2 a^3+a^2+2) x^3+(a^2+a+1) x^2+(a+2) x+2 a^3+2 a+2$
- $y^2=(2 a^3+1) x^6+(a^3+2 a^2+2 a+2) x^5+2 x^4+(2 a^3+2 a^2+a) x^3+(a^3+2 a+2) x^2+(2 a^3+a^2+a) x+2 a^3$
- $y^2=(2 a^3+2 a) x^6+(a^3+2) x^5+(2 a^3+2 a+2) x^4+(a^3+a^2+2) x^3+(a^3+a^2+1) x^2+(a^2+2 a+1) x+a^3+a^2$
- $y^2=(a^3+2 a^2+2 a+2) x^6+(a^3+2 a^2+a+2) x^5+(a^3+2 a^2+1) x^4+(2 a^3+a^2) x^3+(2 a^2+1) x^2+a^2 x+a^3+a^2+a+1$
- $y^2=(2 a^3+2 a+2) x^6+a^3 x^5+(a+1) x^4+(a^2+2 a+2) x^3+(2 a^3+2 a^2+a+1) x^2+a x+2 a^2+1$
- $y^2=(2 a^3+2 a^2+2 a) x^6+(a^3+a^2+2 a) x^5+(2 a^3+a^2+a+1) x^4+(a^3+2 a^2+2) x^3+(a^2+1) x^2+(2 a^2+2) x+a^3+2 a^2+a+1$
- $y^2=(2 a^3+a^2+2 a+1) x^6+(2 a^2+2 a+2) x^5+(a^3+a^2+2 a+2) x^4+(2 a^3+a+2) x^3+x^2+(a^3+a) x+2 a^3+2 a^2$
- $y^2=(a^2+2 a) x^5+(a^3+a+1) x^4+(2 a^3+a) x^3+(a^3+2 a) x^2+(2 a^3+a^2+2) x+a^2+2 a$
- $y^2=2 a^3 x^6+2 x^5+(a^2+1) x^4+(2 a^3+2 a+1) x^3+(2 a^3+a^2+2) x^2+(2 a^3+2 a^2+2 a) x+a^3+a+2$
- $y^2=(a^3+a+2) x^6+x^5+(a^3+2 a+2) x^4+(2 a^3+a^2) x^3+(2 a^2+1) x^2+(a^2+a+1) x+a^2+2$
- $y^2=(2 a^2+2) x^6+(2 a^3+a^2+2 a+2) x^5+(a^3+2 a^2+2) x^4+(2 a^2+2 a+2) x^3+(2 a^3+a+1) x^2+2 a^2 x+a^3+a^2+2 a$
- $y^2=(a+1) x^6+(2 a+2) x^5+(2 a^3+2 a^2+2) x^4+(2 a^2+1) x^3+(2 a+2) x^2+(a^3+1) x+a^3+2 a^2+2$
- $y^2=(a^3+a^2+a) x^6+(a^3+2 a+2) x^5+(2 a^3+a^2+2 a+1) x^4+(a^2+2) x^3+(a^3+2 a^2) x^2+(2 a^2+2 a+1) x+2 a^2+1$
- $y^2=(2 a^3+2 a) x^6+(2 a^3+2 a^2+a+2) x^5+(2 a^2+2 a+1) x^4+(2 a^3+a^2+2 a+1) x^3+2 a^3 x^2+(a^3+2 a^2+a+1) x+a^2+a$
- $y^2=(2 a^3+a^2+a+2) x^6+(2 a^3+2 a+2) x^5+(2 a^3+2 a^2+2 a) x^4+(a^3+a^2+2 a) x^3+(a^3+2 a) x^2+(2 a^3+a^2+a) x+a^3+a^2+2 a+2$
- $y^2=(2 a^2+2 a) x^6+(2 a^3+2 a^2+1) x^5+(a^3+2 a) x^4+(a^3+2 a^2+2) x^3+(2 a^3+2 a^2+2) x^2+(a^3+a^2) x+a^3+2 a^2+a+1$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Endomorphism algebra over $\F_{3^{4}}$The endomorphism algebra of this simple isogeny class is 4.0.1696576.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.81.be_oq | $2$ | (not in LMFDB) |