Invariants
| Base field: | $\F_{3^{4}}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 29 x + 362 x^{2} - 2349 x^{3} + 6561 x^{4}$ | 
| Frobenius angles: | $\pm0.0580440523198$, $\pm0.284000150427$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.3516652.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $12$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4546$ | $42286892$ | $282459800200$ | $1853113095980800$ | $12157515710003257106$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $53$ | $6445$ | $531500$ | $43048881$ | $3486741453$ | $282428413282$ | $22876780120653$ | $1853020122702881$ | $150094635487090700$ | $12157665466911531805$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=(a^3+1) x^6+(2 a^2+a) x^5+(2 a^3+a^2+a+2) x^4+a^3 x^3+(a^3+2 a^2) x+2 a+2$
- $y^2=(a+2) x^6+a x^5+(a+1) x^4+(2 a^3+2 a+1) x^3+2 a^2 x^2+(2 a^2+1) x+a^3+2 a^2+2 a$
- $y^2=(2 a^3+a^2+2 a+1) x^6+(a^2+2 a) x^5+(a^3+a^2+2) x^4+a^3 x^3+(2 a^3+a+1) x^2+a^2 x+2 a^2+2 a$
- $y^2=(2 a^3+a^2+2 a) x^6+(2 a^3+a+2) x^5+(2 a^3+a^2+1) x^4+(2 a^3+a^2+2 a) x^3+(2 a^2+2 a+1) x^2+(a^2+2 a+2) x+a^3+2 a^2+a+1$
- $y^2=(2 a^2+2 a) x^6+(2 a^3+2 a^2+a+1) x^5+(a^3+a^2+2 a+2) x^4+(a^3+a) x^3+(a^2+2 a+1) x^2+(a^3+2 a^2+2) x+2 a^3+2 a$
- $y^2=(a^3+2 a^2+2 a+1) x^6+(2 a^3+2 a^2+2) x^5+(a^3+a+2) x^4+(a^3+2 a^2+2 a) x^3+(a^3+a+1) x^2+(a^3+a+2) x+2 a^2+1$
- $y^2=(a^2+a) x^6+(a^2+2 a+2) x^5+(a^2+a) x^4+(a^2+2 a) x^3+(a^3+a^2+a) x^2+(a^3+a) x+a^3+2 a+2$
- $y^2=(2 a^3+2 a^2+2 a) x^6+(a^3+a^2+2) x^5+(2 a^3+a^2+a) x^4+(a^2+2 a+1) x^3+2 x^2+(2 a^2+1) x+2 a^2+a+1$
- $y^2=2 a x^6+(a^3+2 a^2+a+2) x^5+(a^3+a^2+a) x^4+(2 a^3+a+2) x^3+(2 a^3+a^2) x^2+(2 a^3+1) x+a^3+2 a^2+a$
- $y^2=(2 a^2+1) x^6+(a^2+a+1) x^5+(2 a^3+a^2+2 a+2) x^4+(2 a+1) x^3+(a^3+2 a+1) x^2+2 a x+2 a^3+1$
- $y^2=(a^3+2 a^2+2 a) x^6+(2 a^3+a^2+a+1) x^5+(2 a^2+2 a) x^4+a^3 x^3+(2 a^3+a^2+2 a+2) x^2+(a^3+2 a^2) x+2 a^2+a+1$
- $y^2=(a^3+2 a^2+a+1) x^6+(2 a^3+a^2+2) x^5+(2 a^3+2 a^2+a) x^4+(a^3+2 a^2+2) x^3+a^2 x^2+(a^3+a^2) x$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Endomorphism algebra over $\F_{3^{4}}$| The endomorphism algebra of this simple isogeny class is 4.0.3516652.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.81.bd_ny | $2$ | (not in LMFDB) | 
