Invariants
| Base field: | $\F_{3^{4}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 28 x + 353 x^{2} - 2268 x^{3} + 6561 x^{4}$ |
| Frobenius angles: | $\pm0.142096013077$, $\pm0.273278171236$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.280225.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $32$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4619$ | $42545609$ | $282906359600$ | $1853681593837129$ | $12158086157032608859$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $6484$ | $532338$ | $43062084$ | $3486905054$ | $282430035838$ | $22876792809134$ | $1853020195344644$ | $150094635694716498$ | $12157665465428043604$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=(a^2+2) x^6+(2 a+2) x^5+a x^4+(a^3+a+1) x^3+(2 a^3+a^2) x^2+(2 a^2+1) x+2 a^3+1$
- $y^2=2 a x^6+(2 a^3+a^2+2 a+1) x^5+(a^3+a^2+2 a) x^4+(2 a^3+2 a^2+1) x^3+(a^3+2 a^2+2 a+2) x^2+2 a^3 x+a^3+a$
- $y^2=(a^2+a) x^6+2 a^2 x^5+(a^3+2 a^2+1) x^4+a^2 x^3+(a^3+2 a) x^2+(2 a^2+2 a+2) x+2 a^2+a+1$
- $y^2=(2 a^3+a^2+2) x^6+(a^2+2 a+2) x^5+(a^3+2 a+2) x^4+(2 a^2+2 a+1) x^2+(2 a^3+2 a^2+2 a) x+2 a^3+a$
- $y^2=(a^3+2 a) x^6+(a^3+2 a+1) x^5+(a^3+a^2+2 a+2) x^4+(2 a^3+a^2+2) x^3+a^2 x^2+(a^2+a) x+a+2$
- $y^2=(a^3+2 a^2+1) x^6+(2 a^3+a^2+2) x^5+(a^3+a^2+2 a) x^4+(a+1) x^3+(2 a^3+2 a^2+a+2) x^2+a x+a^3+2 a^2$
- $y^2=(a^3+a^2+a+2) x^6+(2 a^3+2) x^5+(a^3+a^2+a+2) x^4+(2 a^3+2 a+2) x^3+(a+1) x^2+2 a^2 x+a^3+2 a$
- $y^2=(a^3+a^2+2 a) x^6+(2 a^3+a^2) x^5+2 x^4+(2 a^2+a+2) x^3+(2 a^3+a^2+2) x^2+(a+1) x+2 a^3+2 a^2+a+2$
- $y^2=(a^3+a^2+a+1) x^6+(2 a^3+a+2) x^5+(a^3+2 a) x^4+(2 a^3+a+2) x^3+(2 a^3+a^2+1) x^2+(2 a^3+a) x+a^2+2$
- $y^2=(2 a^3+a^2) x^6+(a^2+1) x^5+(2 a^2+2 a+2) x^3+(2 a^2+2 a+1) x^2+(2 a^3+a^2+a+1) x+2 a^3+2 a^2+1$
- $y^2=(2 a^2+1) x^6+2 a^3 x^5+(a^2+2 a) x^4+(a^3+2 a^2+2 a+1) x^3+(a^3+a^2+a) x^2+(a^3+a^2+2) x+a^3+a^2+2$
- $y^2=(a^3+2) x^6+(a^2+2 a+1) x^5+(a^2+2 a) x^4+(a^3+a+1) x^3+(a^3+2) x^2+(a^3+a^2+1) x+2 a^3+2 a+2$
- $y^2=(a^3+2) x^6+(2 a^2+1) x^5+(a^3+2 a^2) x^4+(2 a^3+1) x^3+(2 a^3+2 a^2+2 a+2) x^2+(a^3+a) x+a^3+2 a^2+a$
- $y^2=(2 a^2+1) x^6+(a^2+2 a) x^5+(a^3+a^2+a+2) x^4+(a^3+2 a^2+2 a+1) x^3+(2 a^3+2) x^2+(2 a^3+2 a) x+a^3+2 a^2$
- $y^2=(2 a^3+2 a+1) x^6+(a^2+2) x^5+(2 a^3+a^2+2 a) x^4+(a+2) x^3+2 a^2 x^2+2 a x+2 a^3+a^2+2 a+2$
- $y^2=(a^3+2 a^2+2 a+2) x^6+(a^3+a^2+a+1) x^5+x^4+(2 a^3+2 a^2+2 a) x^3+(a^3+a^2+2 a+2) x^2+(2 a+1) x+2 a^2+2 a+1$
- $y^2=(2 a^3+2 a^2+a) x^6+(a^3+a+2) x^5+2 x^4+(2 a^3+2 a^2+2 a+1) x^3+(2 a^3+a+1) x^2+(2 a^3+a^2+1) x+2 a^3+2 a+1$
- $y^2=(2 a^3+a^2+a) x^6+a x^5+(2 a^2+a) x^4+(a^2+2 a+1) x^3+(a^3+2 a^2+2 a) x^2+(a^3+2 a+1) x+a^3+2 a^2+2$
- $y^2=(2 a^3+2 a) x^6+(a^3+a) x^5+a^2 x^4+(a^2+2 a+2) x^3+(2 a^3+2 a^2) x^2+(a^2+2) x+2 a+1$
- $y^2=(2 a^2+a+1) x^6+(2 a^3+2 a^2+2) x^5+2 x^4+(2 a^3+a+1) x^3+(2 a^2+a+2) x^2+(2 a+1) x+a^3+a$
- and 12 more
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Endomorphism algebra over $\F_{3^{4}}$| The endomorphism algebra of this simple isogeny class is 4.0.280225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.81.bc_np | $2$ | (not in LMFDB) |