Invariants
| Base field: | $\F_{2^{3}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 3 x + 13 x^{2} - 24 x^{3} + 64 x^{4}$ |
| Frobenius angles: | $\pm0.266203455796$, $\pm0.544672082212$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.243873.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $12$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $51$ | $5355$ | $271728$ | $16841475$ | $1087514871$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $6$ | $82$ | $531$ | $4114$ | $33186$ | $262519$ | $2092110$ | $16766146$ | $134232363$ | $1073784682$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2+(x^3+(a^2+a+1) x+a^2+a+1) y=x^6+a x^5+a x^4+a^2 x^3+(a+1) x^2+a x+a^2$
- $y^2+(x^3+(a^2+1) x+a^2+1) y=x^6+(a+1) x^5+(a+1) x^4+x^3+(a^2+a+1) x^2+(a+1) x$
- $y^2+(x^3+(a+1) x+a+1) y=x^6+a^2 x^5+a^2 x^4+(a^2+a) x^3+(a^2+1) x^2+a^2 x+a^2+a$
- $y^2+(x^3+(a^2+a+1) x+a^2+a+1) y=x^6+(a^2+1) x^5+(a^2+1) x^4+x^3+(a+1) x^2+(a^2+1) x$
- $y^2+(x^3+(a+1) x+a+1) y=(a+1) x^5+(a+1) x^4+x+a^2$
- $y^2+(x^3+(a+1) x+a+1) y=x^6+(a^2+a) x^3+(a^2+1) x^2+x+a^2$
- $y^2+(x^3+(a^2+1) x+a^2+1) y=x^6+(a^2+a) x^5+(a^2+a) x^4+a x^3+(a^2+a+1) x^2+(a^2+a) x+a$
- $y^2+(x^3+(a+1) x+a+1) y=x^6+(a^2+a+1) x^5+(a^2+a+1) x^4+x^3+(a^2+1) x^2+(a^2+a+1) x$
- $y^2+(x^3+(a^2+a+1) x+a^2+a+1) y=(a^2+a+1) x^5+(a^2+a+1) x^4+x+a$
- $y^2+(x^3+(a^2+a+1) x+a^2+a+1) y=x^6+a^2 x^3+(a+1) x^2+x+a$
- $y^2+(x^3+(a^2+1) x+a^2+1) y=(a^2+1) x^5+(a^2+1) x^4+x+a^2+a$
- $y^2+(x^3+(a^2+1) x+a^2+1) y=x^6+a x^3+(a^2+a+1) x^2+x+a^2+a$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{3}}$.
Endomorphism algebra over $\F_{2^{3}}$| The endomorphism algebra of this simple isogeny class is 4.0.243873.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.8.d_n | $2$ | 2.64.r_fx |