Properties

Label 2.8.ad_n
Base field $\F_{2^{3}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{3}}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 13 x^{2} - 24 x^{3} + 64 x^{4}$
Frobenius angles:  $\pm0.266203455796$, $\pm0.544672082212$
Angle rank:  $2$ (numerical)
Number field:  4.0.243873.1
Galois group:  $D_{4}$
Jacobians:  $12$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $51$ $5355$ $271728$ $16841475$ $1087514871$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $82$ $531$ $4114$ $33186$ $262519$ $2092110$ $16766146$ $134232363$ $1073784682$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{3}}$.

Endomorphism algebra over $\F_{2^{3}}$
The endomorphism algebra of this simple isogeny class is 4.0.243873.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.8.d_n$2$2.64.r_fx