Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 79 x^{2} )( 1 + 10 x + 79 x^{2} )$ |
$1 + 11 x + 168 x^{2} + 869 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.517915787826$, $\pm0.690177289346$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $192$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7290$ | $40313700$ | $242296942680$ | $1516990018068000$ | $9468423360302647950$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $6457$ | $491434$ | $38947033$ | $3077104261$ | $243087495082$ | $19203913182979$ | $1517108734533073$ | $119851595773582966$ | $9468276093695052577$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 192 curves (of which all are hyperelliptic):
- $y^2=55 x^6+41 x^5+59 x^4+41 x^3+41 x^2+70 x+78$
- $y^2=57 x^6+61 x^5+40 x^4+28 x^3+16 x^2+30 x+46$
- $y^2=4 x^6+45 x^5+47 x^4+46 x^3+49 x^2+31 x+72$
- $y^2=2 x^6+67 x^5+21 x^4+61 x^3+53 x+49$
- $y^2=44 x^6+43 x^5+64 x^4+75 x^3+58 x+48$
- $y^2=19 x^6+10 x^5+70 x^4+51 x^3+37 x^2+30 x+28$
- $y^2=75 x^6+64 x^5+55 x^4+68 x^3+42 x^2+64 x+64$
- $y^2=62 x^6+33 x^5+50 x^4+70 x^3+74 x^2+54 x+27$
- $y^2=9 x^6+33 x^5+38 x^4+6 x^3+12 x^2+5$
- $y^2=49 x^6+34 x^5+61 x^4+49 x^3+12 x^2+73 x+51$
- $y^2=20 x^6+68 x^5+22 x^4+33 x^2+9 x+76$
- $y^2=29 x^6+19 x^5+42 x^4+51 x^3+22 x^2+39 x+35$
- $y^2=25 x^6+53 x^5+4 x^4+42 x^3+63 x^2+70 x$
- $y^2=40 x^6+22 x^5+13 x^4+65 x^3+15 x^2+55 x+46$
- $y^2=4 x^6+8 x^5+69 x^4+10 x^3+17 x^2+27 x+2$
- $y^2=32 x^6+8 x^5+64 x^4+51 x^3+39 x^2+49 x+24$
- $y^2=12 x^6+56 x^5+29 x^4+53 x^3+x^2+11 x+22$
- $y^2=8 x^6+52 x^5+22 x^4+49 x^3+16 x^2+23 x+15$
- $y^2=70 x^6+60 x^5+45 x^4+37 x^3+43 x+13$
- $y^2=18 x^6+14 x^5+21 x^4+75 x^3+38 x^2+69 x+24$
- and 172 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.b $\times$ 1.79.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.al_gm | $2$ | (not in LMFDB) |
2.79.aj_fs | $2$ | (not in LMFDB) |
2.79.j_fs | $2$ | (not in LMFDB) |