Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + x + 79 x^{2} )( 1 + 9 x + 79 x^{2} )$ |
| $1 + 10 x + 167 x^{2} + 790 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.517915787826$, $\pm0.668983296649$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $144$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7209$ | $40435281$ | $242280187344$ | $1516890142316025$ | $9468530716798352529$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $6476$ | $491400$ | $38944468$ | $3077139150$ | $243087400766$ | $19203910384770$ | $1517108774729188$ | $119851595627638680$ | $9468276091288095356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=49 x^6+22 x^5+48 x^4+24 x^3+48 x^2+22 x+49$
- $y^2=76 x^6+59 x^5+13 x^4+44 x^3+13 x^2+59 x+76$
- $y^2=24 x^6+5 x^5+9 x^4+77 x^3+51 x^2+50 x+32$
- $y^2=50 x^6+52 x^5+48 x^4+22 x^3+36 x^2+63 x+60$
- $y^2=33 x^6+21 x^5+42 x^4+3 x^3+6 x^2+49 x+69$
- $y^2=9 x^6+8 x^5+32 x^4+31 x^3+32 x^2+8 x+9$
- $y^2=42 x^6+77 x^5+71 x^4+12 x^3+71 x^2+61 x+7$
- $y^2=10 x^6+24 x^5+69 x^4+67 x^3+23 x^2+13 x+13$
- $y^2=65 x^6+54 x^5+68 x^4+41 x^3+17 x^2+51 x+4$
- $y^2=23 x^6+32 x^5+10 x^4+19 x^3+10 x^2+32 x+23$
- $y^2=23 x^6+67 x^5+60 x^4+77 x^3+36 x^2+21 x+5$
- $y^2=69 x^6+7 x^5+70 x^4+10 x^3+67 x^2+29 x+8$
- $y^2=71 x^6+74 x^5+58 x^4+15 x^3+68 x^2+29 x+44$
- $y^2=32 x^6+8 x^5+65 x^4+54 x^3+38 x^2+36 x+17$
- $y^2=6 x^6+62 x^5+74 x^4+59 x^3+7 x^2+24 x+43$
- $y^2=33 x^6+33 x^5+59 x^4+57 x^3+13 x^2+24 x+55$
- $y^2=18 x^6+51 x^5+44 x^4+12 x^3+25 x^2+5 x+41$
- $y^2=64 x^6+10 x^5+77 x^4+45 x^3+77 x^2+10 x+64$
- $y^2=72 x^6+5 x^5+28 x^4+21 x^3+76 x^2+69 x+11$
- $y^2=55 x^6+41 x^5+64 x^4+65 x^3+10 x^2+33 x+11$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.b $\times$ 1.79.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.ak_gl | $2$ | (not in LMFDB) |
| 2.79.ai_ft | $2$ | (not in LMFDB) |
| 2.79.i_ft | $2$ | (not in LMFDB) |