Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x - 78 x^{2} + 79 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.184582454493$, $\pm0.851249121159$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-35})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $82$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6244$ | $37988496$ | $243321212176$ | $1517582824640064$ | $9468370887683848924$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $81$ | $6085$ | $493512$ | $38962249$ | $3077087211$ | $243089316286$ | $19203905621709$ | $1517108880042289$ | $119851595310763608$ | $9468276077422052125$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 82 curves (of which all are hyperelliptic):
- $y^2=41 x^6+5 x^5+16 x^4+33 x^3+13 x^2+61 x+9$
- $y^2=77 x^6+21 x^5+69 x^4+3 x^3+14 x^2+8 x+24$
- $y^2=69 x^6+2 x^5+10 x^4+8 x^3+34 x^2+25 x$
- $y^2=38 x^6+2 x^5+31 x^4+45 x^3+17 x^2+27 x+49$
- $y^2=3 x^6+3 x^3+53$
- $y^2=48 x^6+31 x^5+8 x^4+17 x^3+66 x^2+76 x+30$
- $y^2=64 x^6+45 x^5+11 x^4+73 x^3+69 x^2+3 x+63$
- $y^2=3 x^6+68 x^5+36 x^4+13 x^3+33 x^2+68 x+66$
- $y^2=3 x^6+74 x^5+48 x^4+34 x^3+17 x^2+78 x+6$
- $y^2=63 x^6+3 x^5+27 x^4+32 x^3+36 x^2+37 x+25$
- $y^2=9 x^6+27 x^5+53 x^4+47 x^3+32 x^2+46 x+65$
- $y^2=47 x^6+36 x^5+71 x^4+24 x^3+64 x^2+17 x+29$
- $y^2=39 x^6+33 x^5+78 x^4+11 x^3+14 x^2+5 x+23$
- $y^2=71 x^6+7 x^5+13 x^4+60 x^3+71 x^2+67 x+55$
- $y^2=5 x^6+41 x^5+61 x^4+18 x^3+38 x^2+2 x+45$
- $y^2=48 x^6+31 x^5+48 x^4+2 x^3+75 x^2+74 x+76$
- $y^2=47 x^6+38 x^5+30 x^4+78 x^3+60 x^2+52 x+65$
- $y^2=71 x^6+73 x^5+14 x^4+78 x^3+67 x^2+56 x+25$
- $y^2=26 x^6+16 x^5+6 x^4+40 x^3+45 x^2+21 x+74$
- $y^2=70 x^5+69 x^4+6 x^3+43 x^2+36 x+59$
- and 62 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{3}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-35})\). |
| The base change of $A$ to $\F_{79^{3}}$ is 1.493039.jc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-35}) \)$)$ |
Base change
This is a primitive isogeny class.