Properties

Label 2.79.av_je
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 - 16 x + 79 x^{2} )( 1 - 5 x + 79 x^{2} )$
  $1 - 21 x + 238 x^{2} - 1659 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.143514932644$, $\pm0.409243695363$
Angle rank:  $2$ (numerical)
Jacobians:  $96$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4800$ $39168000$ $243460857600$ $1517018158080000$ $9468153888102984000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $59$ $6277$ $493796$ $38947753$ $3077016689$ $243088211662$ $19203925734311$ $1517108930311153$ $119851596027327404$ $9468276077975558077$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.aq $\times$ 1.79.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.al_da$2$(not in LMFDB)
2.79.l_da$2$(not in LMFDB)
2.79.v_je$2$(not in LMFDB)