Invariants
    This isogeny class is not simple,
  
    primitive, 
  
    ordinary,
  
    and not supersingular.
  
    It is principally polarizable and
  contains a Jacobian.
    
This isogeny class is ordinary.
 
Point counts
Point counts of the abelian variety
  
    | $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|
  
  
    | $A(\F_{q^r})$ | $4800$ | $39168000$ | $243460857600$ | $1517018158080000$ | $9468153888102984000$ | 
  
Point counts of the curve
  
    | $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|
  
    | $C(\F_{q^r})$ | $59$ | $6277$ | $493796$ | $38947753$ | $3077016689$ | $243088211662$ | $19203925734311$ | $1517108930311153$ | $119851596027327404$ | $9468276077975558077$ | 
  
Jacobians and polarizations
      This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
  - $y^2=70 x^6+38 x^5+76 x^4+57 x^3+47 x^2+41 x+58$
- $y^2=64 x^6+2 x^5+38 x^4+53 x^3+60 x^2+57 x+3$
- $y^2=30 x^6+44 x^5+46 x^4+68 x^3+31 x^2+61 x+34$
- $y^2=67 x^6+47 x^5+6 x^4+56 x^3+66 x^2+40 x+30$
- $y^2=71 x^6+32 x^5+16 x^4+36 x^3+19 x^2+68 x+24$
- $y^2=37 x^6+11 x^5+69 x^4+3 x^3+65 x^2+7 x+15$
- $y^2=55 x^6+63 x^5+7 x^4+60 x^3+64 x^2+11 x+6$
- $y^2=54 x^6+42 x^5+77 x^4+27 x^3+6 x^2+62 x+22$
- $y^2=78 x^6+46 x^5+32 x^4+76 x^3+28 x^2+78 x+46$
- $y^2=15 x^6+63 x^5+69 x^4+44 x^3+49 x^2+18 x+39$
- $y^2=12 x^6+42 x^5+2 x^4+14 x^3+75 x^2+19 x+13$
- $y^2=24 x^6+25 x^5+73 x^4+15 x^3+12 x^2+18 x+1$
- $y^2=4 x^6+25 x^5+46 x^4+20 x^3+38 x^2+63 x+51$
- $y^2=41 x^6+10 x^5+48 x^4+52 x^3+24 x^2+27 x+24$
- $y^2=22 x^6+47 x^5+61 x^4+63 x^3+23 x^2+69 x+50$
- $y^2=25 x^6+8 x^5+15 x^4+29 x^3+28 x^2+3 x+46$
- $y^2=x^6+8 x^5+40 x^4+41 x^3+x^2+28 x+68$
- $y^2=4 x^6+78 x^5+2 x^4+6 x^3+35 x^2+47 x+58$
- $y^2=30 x^6+7 x^5+3 x^4+72 x^3+74 x^2+31 x+15$
- $y^2=22 x^6+24 x^5+28 x^4+53 x^3+49 x^2+45 x+57$
- and 76 more
  - $y^2=78 x^6+25 x^5+39 x^4+75 x^3+48 x^2+61 x+27$
- $y^2=72 x^6+74 x^5+55 x^4+12 x^3+3 x^2+43 x+59$
- $y^2=20 x^6+44 x^5+59 x^4+42 x^3+x^2+5 x+34$
- $y^2=27 x^6+77 x^5+27 x^4+21 x^3+66 x^2+62 x+8$
- $y^2=61 x^6+33 x^4+67 x^3+35 x^2+26 x+15$
- $y^2=40 x^6+15 x^5+40 x^4+53 x^3+62 x^2+58 x+14$
- $y^2=57 x^6+34 x^5+11 x^4+6 x^3+23 x^2+77 x+55$
- $y^2=51 x^6+x^5+68 x^4+76 x^3+68 x^2+78 x+25$
- $y^2=63 x^6+20 x^5+3 x^4+58 x^3+x^2+5 x+58$
- $y^2=43 x^6+20 x^5+43 x^4+76 x^3+62 x+45$
- $y^2=43 x^6+9 x^5+37 x^4+76 x^3+18 x^2+69 x+1$
- $y^2=22 x^6+42 x^5+3 x^4+10 x^3+60 x^2+65 x+28$
- $y^2=44 x^6+10 x^5+27 x^4+44 x^3+38 x^2+35 x+23$
- $y^2=38 x^6+21 x^5+61 x^4+17 x^3+15 x^2+46 x+66$
- $y^2=4 x^6+40 x^5+71 x^4+18 x^3+15 x^2+34 x+44$
- $y^2=32 x^6+33 x^5+8 x^4+22 x^3+15 x^2+63 x+7$
- $y^2=46 x^6+14 x^5+64 x^4+35 x^3+70 x^2+16 x+51$
- $y^2=39 x^6+62 x^5+43 x^4+53 x^3+11 x^2+54 x+2$
- $y^2=65 x^6+50 x^5+56 x^4+20 x^3+8 x^2+18 x+68$
- $y^2=30 x^6+33 x^5+x^4+77 x^3+12 x^2+68 x+55$
- $y^2=71 x^6+77 x^5+4 x^4+62 x^3+26 x^2+13$
- $y^2=18 x^6+65 x^5+x^4+5 x^3+47 x^2+48 x+31$
- $y^2=35 x^6+4 x^5+35 x^4+32 x^3+16 x^2+23 x+48$
- $y^2=72 x^6+33 x^5+50 x^4+26 x^3+44 x^2+30 x+23$
- $y^2=78 x^6+48 x^5+38 x^4+32 x^3+49 x^2+71 x+14$
- $y^2=22 x^6+62 x^5+21 x^4+70 x^3+22 x^2+27 x+48$
- $y^2=4 x^6+58 x^5+31 x^4+63 x^3+41 x^2+7 x+29$
- $y^2=15 x^6+68 x^5+32 x^4+52 x^3+25 x^2+39 x+75$
- $y^2=22 x^6+11 x^5+33 x^4+65 x^3+60 x^2+40 x+57$
- $y^2=32 x^6+38 x^5+16 x^4+31 x^3+7 x^2+57 x$
- $y^2=53 x^6+59 x^5+49 x^4+64 x^3+56 x^2+49 x+54$
- $y^2=24 x^6+41 x^5+44 x^4+56 x^3+73 x^2+29 x+9$
- $y^2=28 x^6+73 x^5+26 x^4+4 x^3+24 x^2+53 x+10$
- $y^2=4 x^6+43 x^5+32 x^4+51 x^3+26 x^2+16 x+41$
- $y^2=74 x^6+52 x^5+5 x^4+18 x^3+31 x^2+31 x+69$
- $y^2=23 x^6+39 x^5+17 x^4+68 x^3+24 x^2+9 x+28$
- $y^2=58 x^6+26 x^5+30 x^4+19 x^3+62 x^2+75 x+24$
- $y^2=29 x^6+8 x^5+37 x^4+28 x^3+38 x^2+5 x+61$
- $y^2=15 x^6+23 x^5+65 x^4+39 x^3+24 x^2+42 x+59$
- $y^2=63 x^6+13 x^5+54 x^4+55 x^2+57 x+10$
- $y^2=12 x^6+34 x^5+50 x^4+42 x^3+7 x^2+63 x+25$
- $y^2=74 x^5+24 x^4+28 x^3+37 x^2+71 x+12$
- $y^2=24 x^6+59 x^5+31 x^4+35 x^3+11 x^2+57 x+63$
- $y^2=74 x^6+49 x^5+43 x^4+59 x^3+11 x^2+50 x+69$
- $y^2=44 x^6+65 x^5+10 x^4+70 x^3+49 x^2+52 x+38$
- $y^2=55 x^6+68 x^5+x^4+8 x^3+18 x^2+70 x+71$
- $y^2=67 x^6+51 x^5+59 x^4+23 x^3+18 x^2+57 x+55$
- $y^2=51 x^6+59 x^5+47 x^4+53 x^3+41 x^2+41 x+53$
- $y^2=34 x^6+34 x^5+69 x^3+12 x^2+18 x+56$
- $y^2=77 x^6+48 x^5+71 x^4+60 x^3+72 x^2+30 x+27$
- $y^2=28 x^6+69 x^5+48 x^4+34 x^3+77 x^2+46 x+54$
- $y^2=17 x^6+31 x^5+14 x^4+8 x^3+60 x^2+70 x$
- $y^2=71 x^6+26 x^5+52 x^4+14 x^3+42 x^2+32 x+34$
- $y^2=25 x^6+58 x^5+72 x^4+7 x^3+62 x^2+26 x+46$
- $y^2=53 x^6+43 x^5+59 x^4+3 x^3+47 x^2+73 x+73$
- $y^2=18 x^6+55 x^5+60 x^4+33 x^3+19 x^2+69 x+31$
- $y^2=24 x^6+25 x^5+66 x^3+31 x^2+63 x+25$
- $y^2=12 x^6+48 x^5+54 x^4+40 x^3+44 x^2+18 x+8$
- $y^2=63 x^6+12 x^5+52 x^4+40 x^3+9 x^2+50 x+31$
- $y^2=69 x^5+41 x^4+53 x^3+64 x^2+56 x+23$
- $y^2=30 x^6+48 x^5+56 x^4+45 x^3+67 x^2+29 x+33$
- $y^2=61 x^6+39 x^5+60 x^4+15 x^3+12 x^2+8 x+65$
- $y^2=56 x^6+52 x^5+64 x^4+39 x^3+17 x^2+41 x+36$
- $y^2=76 x^6+66 x^5+75 x^4+72 x^3+48 x^2+53 x+44$
- $y^2=30 x^6+58 x^5+50 x^3+11 x^2+64 x+68$
- $y^2=20 x^6+55 x^5+63 x^4+49 x^3+9 x^2+19 x$
- $y^2=59 x^6+69 x^5+53 x^4+55 x^3+74 x^2+46 x+30$
- $y^2=21 x^6+5 x^5+46 x^4+16 x^3+8 x^2+2 x+30$
- $y^2=39 x^6+55 x^5+67 x^4+66 x^3+5 x^2+33 x+30$
- $y^2=30 x^6+54 x^5+24 x^4+8 x^3+74 x^2+11 x+60$
- $y^2=17 x^6+57 x^5+59 x^4+18 x^3+58 x^2+35 x+29$
- $y^2=55 x^6+67 x^5+16 x^4+63 x^3+37 x^2+31 x+8$
- $y^2=70 x^6+15 x^5+38 x^4+41 x^3+29 x^2+63 x+26$
- $y^2=63 x^6+14 x^5+14 x^4+5 x^3+49 x^2+62 x+23$
- $y^2=38 x^6+13 x^5+41 x^4+15 x^3+36 x^2+57 x+28$
- $y^2=53 x^6+5 x^5+4 x^4+25 x^3+16 x^2+10 x+27$
 All geometric endomorphisms are defined over $\F_{79}$.
 
 Endomorphism algebra over $\F_{79}$
| The isogeny class factors as 1.79.aq $\times$ 1.79.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: | 
Base change
This is a primitive isogeny class.
Twists
   Below is a list of all twists of this isogeny class.