Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 14 x + 180 x^{2} - 1106 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.259326847189$, $\pm0.467644018494$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.836928.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $198$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5302$ | $39987684$ | $243827469358$ | $1517145047166672$ | $9468313520677393822$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $6406$ | $494538$ | $38951014$ | $3077068566$ | $243088091350$ | $19203907379646$ | $1517108680605310$ | $119851595088871074$ | $9468276087643604086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 198 curves (of which all are hyperelliptic):
- $y^2=28 x^6+52 x^4+43 x^3+62 x^2+69 x+39$
- $y^2=42 x^6+76 x^5+29 x^4+11 x^3+58 x^2+18 x+2$
- $y^2=67 x^6+31 x^5+19 x^4+50 x^3+7 x^2+36 x+16$
- $y^2=28 x^6+19 x^5+43 x^4+73 x^3+63 x^2+25 x+45$
- $y^2=23 x^6+52 x^5+45 x^4+52 x^3+24 x^2+69 x+42$
- $y^2=24 x^6+8 x^5+65 x^4+11 x^3+21 x^2+19 x+24$
- $y^2=62 x^6+25 x^5+12 x^4+62 x^3+7 x^2+25 x+54$
- $y^2=12 x^6+42 x^5+37 x^4+43 x^2+20 x+50$
- $y^2=24 x^6+38 x^5+77 x^4+47 x^3+12 x^2+29 x+47$
- $y^2=52 x^6+57 x^5+45 x^4+59 x^3+49 x^2+36 x+57$
- $y^2=10 x^6+37 x^5+73 x^3+51 x^2+48 x+35$
- $y^2=35 x^6+20 x^5+37 x^4+11 x^3+77 x^2+57 x+61$
- $y^2=70 x^6+32 x^5+35 x^4+41 x^3+66 x^2+39 x+14$
- $y^2=68 x^6+59 x^5+12 x^4+5 x^3+78 x^2+37 x+51$
- $y^2=53 x^6+36 x^5+78 x^4+78 x^3+74 x^2+66 x+68$
- $y^2=x^6+14 x^5+2 x^4+9 x^3+42 x^2+75 x+71$
- $y^2=30 x^6+35 x^5+11 x^4+44 x^3+69 x^2+66 x+16$
- $y^2=27 x^6+58 x^5+36 x^4+54 x^3+76 x^2+29 x+12$
- $y^2=13 x^6+23 x^5+35 x^4+3 x^3+24 x^2+23 x+21$
- $y^2=58 x^6+51 x^5+66 x^4+78 x^3+13 x^2+36 x+15$
- and 178 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.836928.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.o_gy | $2$ | (not in LMFDB) |